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Introduction
Generic Matrices

Thank-you for the invitation to speak!

Given a matrix of indeterminates, we can form a polynomial ring
over an arbitrary algebraically closed field, k .

r , s arbitrary

positive integers

X =


x11 x12 · · · x1s
...

. . .
. . .

...

xr1 · · · · · · xrs


k[X ] = polynomial ring over

k with variables

x11, . . . , xrs
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Introduction
Famous Example: Determinantal Rings (Invariant Theory)

G = GLt k, general linear group

(equivalently, invertible t × t matrices over k)

Y =


y11 y12 · · · y1t
...

. . .
. . .

...

yr1 · · · · · · yrt

 ; Z =


z11 z12 · · · z1s
...

. . .
. . .

...

zt1 · · · · · · zts


S = polynomial ring over k, in the variables y11, . . . , yrt , z11, . . . , zts

SG = k-algebra generated by the entries of the product matrix YZ

Let (each matrix M ∈) G act on S by matrix multiplication:

M : Y 7→ YM−1

Z 7→ MZ

yij 7→ (i , j) entry of YM−1

(0 ≤ i ≤ r , 0 ≤ j ≤ t)

zij 7→ (i , j) entry of MG

(0 ≤ i ≤ t, 0 ≤ j ≤ s)
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Introduction
First Fundamental Problem of Invariant Theory

The k-map

Φ : k[X ]→ S

xij 7→ (i , j) entry of YZ

(1 ≤ i ≤ r , 1 ≤ j ≤ s)

induces a surjection k[X ] � SG ⊂ S , and ker Φ is generated by
the size t + 1 minors of X . To maintain consistency with conven-
tion, put t ′ = t + 1. k[X ]/ It′ ∼= SG is called a determinantal
ring.

SG = {s ∈ S | g(s) = s for all g ∈ G} is called

the ring of invariants under the action of G .

It+1 = ker Φ is called a

determinantal ideal.

Theorem (Eagon, Hochster 1971)

Determinantal rings are Cohen-Macaulay.
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Introduction
Special Case: Grassmannians

r ≤ s

G = SLr k, special linear group

(i.e., matrices with determinant equal to 1)

G acts on k[X ] via

M : xij 7→ (i , j) entry of MX (1 ≤ i ≤ r , 1 ≤ j ≤ s).

detM = ∧rM =⇒ ∧r (MX ) = ∧rX
=⇒ r -minors of X remain fixed

The ring of invariants is exactly the homogeneous coordinate ring
of the Grassmann variety (we use Grassk(r , s) to denote said
variety). The relations on its k-generators (the r -minors) are
exactly the Plücker relations.
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Introduction
Example 2: Pfaffian Rings

X is an n × n alternating matrix. The Pfaffian ideals Pft = Pft(X ) are
generated by the square roots of each of the symmetrically placed
t-minors of X .

X =



0 x1 x2 x3 . . . xn−1

−x1 0 xn xn+1 . . . x2n−3

−x2 −xn 0 x2n−2

−x3 −xn+1 −x2n−2 0
...

−xn−1 x2n−3 . . . 0



k[X ] = k[x1, . . . , x(n2)
]

Pf2 = (x1, · · · , x(n2)
)

Pf3 = (0)

Pf4 = (x1x2n−2 + x2xn+1 + x3xn, . . . )
...

Pfn =

({
(
√

det X if n is even

0 if n is odd

)The Pfaffian rings are the quotients
k[X ]/Pft .
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Ideals Generated by Principal Minors

The principal minors of a square matrix are those whose defining
row and column indices are the same.

Question

What geometric properties do algebraic sets defined by principal
minors satisfy?

Pt = ideal in k[X ] generated by the size t principal minors of the
generic square matrix X
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Ideals Generated by Principal Minors
t = 2

Theorem (–)

For all n, k[X ]/P2 is a normal complete intersection domain, and
is isomorphic to a k-algebra generated by monomials. Hence, it is
strongly F -regular and Gorenstein.

For t > 2 it becomes more convenient to study components of
V(Pt) according to matrix rank.

Yn,r ,t = V(Pt)
⋂
{n × n matrices of rank r}
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Ideals Generated by Principal Minors
t = n − 1

Theorem (–)

For n ≥ 4, V(Pn−1) has two components: one of codimension 4
and the other of codimension n.

V(In−1) =
⋃

r ′<n−1
Yn,r ′,n−1(1)

V(Q) = Yn,n,n−1 ⊃ Yn,n−1,n−1

Θ : k[X ]det X →
(
k[X ]
P1

)
det X

X 7→ (det X ) · X−1

Q = contraction of ker Θ to k[X ]

(2)
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Ideals Generated by Principal Minors
Corollary: A Bound on Codimension

For any n, t:

x11 · · · x1,t+1 x1,t+2 · · · · · · x1n
...

. . .
...

...
. . .

. . .
...

xt+1,1 · · · xt+1,t+1 xt+1,t+2 · · · · · · xt+1,n

0 · · · · · · 0 xt+2,t+2 · · ·
...

...
. . .

. . .
. . . 0

. . .
...

...
. . .

. . .
. . .

. . .
. . .

...

0 · · · · · · · · · · · · · · · 0


ht Pt ≤ n + n − 1 + n − 2 + · · ·+ n − (n − t − 2) + 4

=

(
n + 1

2

)
−
(
t + 2

2

)
+ 4.
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Ideals Generated by Principal Minors
t = n − 2

Theorem (–)

dim Yn,n−2,n−2 = n2 − 4− n

In explaining this, we will focus on the first non-trivial case, n = 5. A
matrix A ∈ Y5,3,3 iff

(a) rank A = 3 and

(b) the size 3 principal minors of A vanish.

Yn,n−2,n−2

A
∈

Grassk(n − 2, n)× Grassk(n − 2, n)

(col space of A, row space of A)

∈

Ashley K. Wheeler Ideals Generated by Principal Minors



Smallest Non-trivial Case, n = 5
Normalized Factorization of a Matrix

Wolog, say the minor given by row indices I = {1, 2, 3} and
column indices J = {1, 2, 4} does not vanish.

A =



1 0 0

0 1 0

0 0 1

u41 u42 u43

u51 u52 u53


︸ ︷︷ ︸

U

·W ·


1 0 v13 0 v15

0 1 v23 0 v25

0 0 v33 1 v35


︸ ︷︷ ︸

V

3× 3 invertible

2(n− 2) + (n− 2)2 + 2(n− 2) = n2 − 4 parameters
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Smallest Non-trivial Case, n = 5
Exterior Powers

The principal 3 minors of A vanish

⇐⇒ the diagonal of ∧3A vanishes

⇐⇒ for each index i = 1, . . . , 10 the ith entry

of either the column vector ∧3U or
the row vector ∧3V vanishes.∧3U︷ ︸︸ ︷

1
u43
u53
−u42
−u52

u42u53−u43u52
u41
u51

−u41u53+u43u51
−u41u52+u42u51

∧3A = · ∧3 W

scalar

· ( v33 1 v35 v23 v23v35−v25v33 −v25 −v13 −v13v35+v15v33 v15 v13v25−v15v23 )︸ ︷︷ ︸
∧3V
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Smallest Non-trivial Case, n = 5
Equations

1(v33)

u43(1)

u53v35

−u42v23
−u52(v23v35 − v25v33)

(u42u53 − u43u52)(−v25)

u41(−v13)

u51(−v13v35 + v15v33)

(−u41u53 + u43u51)v15

(−u41u52 + u42u51)(v13v25 − v15v23)



= 0.

gU ∼


1 0 0

0 1 0

0 0 1

u41 u42 u43

u51 u52 u53

 gV ∼

1 0 v13 0 v15

0 1 v23 0 v25

0 0 v33 1 v35



The pair
×Grassk(3, 5) Grassk(3, 5)

∈ ∈

yields, in order for the diagonal
of the product to vanish (up to a
scalar), the system
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Graphs of Plücker Coordinates
Encoding Vanishing Minors

For any point g ∈ Grassk(3, 5), we encode which of its Plücker coordinates
vanish into a simple graph with 5 vertices. A vertex represents an index; an
edge joining two vertices indicates the minor of complementary indices vanishes.

A simple graph has no loops
and for every pair of vertices,
has at most one edge joining
them.

U,V are normalized =⇒ Plücker coordinates for
gU , gV identify with minors of the submatrices
consisting of the variables

gU ∼


1 0 0

0 1 0

0 0 1

u41 u42 u43

u51 u52 u53

 gV ∼

1 0 v13 0 v15

0 1 v23 0 v25

0 0 v33 1 v35


u1

u2

u3 u4

u5

v1

v2

v3 v4

v5
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Graphs of Plücker Coordinates
Permissible Graphs and Subvarieties

Proposition

The graph determined by g ∈ Grassk(n − 2, n) is well-defined.

Definition

1 A size n graph G is permissible means

(a) G has at most
(

n
n−2

)
− 1 edges, i.e., G is not complete and

(b) every vertex in G of degree a < n − 1 is part of a complete
subgraph of size a (called a clique).

2 A subvariety S ⊆ Grass(n − 2, n) is permissible means it is
the set of all points with the same permissible graph, which
we denote Graph(S).
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Graphs of Plücker Coordinates
Examples (n = 5)

(1)

(2)

(3)

A vertex is
1 isolated means it has no edges.
2 dominating means it is joined to every other vertex.

A finite set of graphs G1,G2, . . . ,Gs is
a graph covering means the union of
their edges forms a complete graph on
a set of vertices 1, . . . , n.

Question

What are the minimal pairs of permissible graphs that cover n vertices?
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Characterization of the Components of Yn,n−2,n−2

Theorem (–)

The pairs S, T ⊂ Grass(n − 2, n) corresponding to components of Yn,n−2,n−2

are those such that

(a) Graph(S) consists of a size a > 1 clique with n − a isolated vertices and

(b) Graph(T) is the complement of Graph(S), i.e., a size n graph with n − a
dominating vertices.

Theorem (–)

Suppose S× T ⊆ Grass(n− 2, n)× Grass(n− 2, n) corresponds to a component
of Yn,n−2,n−2. Let a denote the size of the maximal clique occurring in
Graph(S). Then

1 codim S = a− 1.

2 codimT = 2(n − a).

3 (corollary) 2 ≤ a ≤ n − 1, so the minimal codimension of such S× T is n.
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Characterization of the Components of Yn,n−2,n−2
n = 5

codim(S× T) = 7

codim(S× T) = 6

codim(S× T) = 5

(Graph(S) Graph(T))

(1)

(2)

(3)

(up to, of course, permutation of S and T)
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What’s Next

Question

1 What are the components for Yn,n−1,n−2 and Yn,n,n−2?

2 What are the components for Yn,n−3,n−3?

3 What are the singularities of V(Q) like?
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