Defining equations for matroid varieties using the Grassmann-Cayley algebra

Ashley K. Wheeler

Mount Holyoke College

29 Jan 2020

- Joint w/ Jessica Sidman (MHC) and Will Traves (USNA).

- Goal: To find defining equations for matroid varieties.

Introduction

What is a matroid?

Q: Which collections of 3 columns form a basis for the column space of A ?

$$
A=\left(\begin{array}{ccccc}
-1 & 1 & 2 & 3 & 4 \\
-1 & 1 & 2 & 0 & -2 \\
1 & 1 & 1 & 1 & 1
\end{array}\right)
$$

How can we tell?

Could row reduce A first.

$$
\left(\begin{array}{ccccc}
-1 & 1 & 2 & 3 & 4 \\
-1 & 1 & 2 & 0 & -2 \\
1 & 1 & 1 & 1 & 1
\end{array}\right) \rightarrow \operatorname{rref} A=\left(\begin{array}{ccccc}
1 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\
0 & 1 & \frac{3}{2} & 0 & -\frac{3}{2} \\
0 & 0 & 0 & 1 & 2
\end{array}\right)
$$

Preferred way: Look for non-zero 3-minors of A (or of rref A).
Fact: Columns of an $r \times r$ matrix are linearly independent if and only if the determinant of the matrix is non-zero.

Number the columns of $A 1$ through 5. Here are the 3-minors, according to their column indices:

$$
\begin{array}{rlr}
\{1,2,3\} \rightarrow 0 & \{1,2,4\} \rightarrow-6 & \{1,2,5\} \rightarrow-12 \\
\{1,3,4\} \rightarrow-9 & \{1,3,5\} \rightarrow-18 & \{1,4,5\} \rightarrow-9 \\
\{2,3,4\} \rightarrow 3 & \{2,3,5\} \rightarrow-6 & \{2,4,5\} \rightarrow-11 \\
\{3,4,5\} \rightarrow 0 & &
\end{array}
$$

The matroid \mathcal{M}_{A} on A is given by the set:
$\mathcal{B}=\{$ all 3-tuples except $\{1,2,3\}$ and $\{3,4,5\}\} \subset\{1, \ldots, 5\}$
The sets in \mathcal{B} are called bases for the matroid \mathcal{M}_{A}.

Matroids are a generalization of the collections of linearly independent columns of a matrix.

Applications: Where are matroids used?

- Combinatorial optimization: artificial intelligence, machine learning, software engineering; example: travelling salesman problem
- Coding theory: error correcting, data compression, cryptography
- Network theory: particle physics, biology, social networks; example: bridges of Königsberg problem

Problem

Defining equations for matroid varieties

Q: Given a matroid on a matrix A, what other matrices have the same matroid as A ? (e.g., rref A)

Consider this generic matrix:

$$
X=\left(\begin{array}{lllll}
x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\
x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\
x_{31} & x_{32} & x_{33} & x_{34} & x_{35}
\end{array}\right)
$$

We want all possible x-values that will give the same matroid (i.e. same columns as bases) as A.

Defining equations are a system of equations in the x 's whose solution set minimally cuts out all of the matrices with matroid \mathcal{M}_{A}.

Call this solution set \mathcal{V}_{A}, the matroid variety on A.

Mnëv (1985), Sturmfels (1989), Knutson, Lam, \& Speyer (2013): All "hell" breaks loose when we try to find defining equations for \mathcal{V}_{A}.

Why? Two reasons:
(1) The Zariski topology (beyond the scope of this talk).
(2) The equations are not obvious (as we shall see).

Paradigm shift

Idea: Think of the columns of A as points in the plane.
The columns of the matrix A are vectors in 3 -space, that span lines through the origin.

If we cut these lines with a plane then the lines become points in the plane.

Why would we do this?

Q: What do you notice about the points in relation to the matroid \mathcal{M}_{A} ?

Points 1,2 , and 3 are collinear if and only if $\{1,2,3\}$ is not a basis for \mathcal{M}_{A}. We say the bracket [123] vanishes, or equals 0 .

The bracket is shorthand for determinant:

$$
[123]=0 \Longleftrightarrow\left|\begin{array}{lll}
x_{11} & x_{12} & x_{13} \\
x_{21} & x_{22} & x_{23} \\
x_{31} & x_{32} & x_{33}
\end{array}\right|=0
$$

This is a defining equation in the x 's!
Q: What is another defining equation for \mathcal{V}_{A} ?
Are there others? ???

Example (Ford 2013):

$\mathcal{M}_{\text {pencil }}=$ matroid on a 3×7 matrix with nonbases
$\{1,2,7\},\{3,4,7\},\{5,6,7\}$

Q: Which brackets vanish?

All hell breaks loose: $[134][256]-[234][156]=0$ is also a defining equation for $\mathcal{V}_{\text {pencil }}$. How could we have known this?!

Ans: The Grassmann-Cayley algebra.

Tool Grassmann-Cayley algebra

The Grassmann-Cayley algebra was invented to do synthetic projective geometry.

We do arithmetic on the points (vectors) themselves, and obtain expressions in the brackets.

There are two operations:
join (\vee): refers to the line passing through points

The line joining 1 and 2 is $1 \vee 2$, or 12 .
Three points joined makes a bracket, and three collinear points make the bracket vanish.
meet (\wedge) : refers to the intersection of two lines

The meet of the lines $1 \vee 2$ and $3 \vee 4$ is $(1 \vee 2) \wedge(3 \vee 4)$, or $12 \wedge 34$.

The meet operation uses shuffle products, which also produce expressions in the brackets.

We have $((1 \vee 2) \wedge(3 \vee 4)) \vee 5 \vee 6=0$, because these three points are collinear. Here's how to apply the shuffles:

$$
\begin{aligned}
(12 \wedge 34) \vee 56 & =([134] 2-[234] 1) 56 \\
& =[134][256]-[234][156]=0
\end{aligned}
$$

Example: Pascal's theorem says if six points on a conic are joined in the way illustrated below, then the resulting intersection points (7,8 , and 9) are collinear.

We have a matroid $\mathcal{M}_{\text {Pascal }}$ corresponding to this configuration of points. Let's find defining equations for $\mathcal{V}_{\text {Pascal }}$.

Q: Which brackets vanish?

Theorem (Sidman, Traves, W)

The defining equations for the matroid variety $\mathcal{V}_{\text {Pascal }}$ include at least one quartic, three independent cubics, and three independent quadrics in the brackets, besides the vanishing brackets [127], [238], [349], [457], [568], [169], [789].

Finding the quartic: The statement of Pascal's theorem says we have $(12 \wedge 45) \vee(23 \wedge 56) \vee(34 \wedge 61)=0$.

Apply the shuffle products:

$$
\begin{aligned}
& (12 \wedge 45) \vee(23 \wedge 56) \vee(34 \wedge 61) \\
= & ([145] 2-[245] 1) \vee([256] 3-[356] 2) \vee([361] 4-[461] 3)
\end{aligned}
$$

Now "foil":

$$
\begin{aligned}
& (([145] 2-[245] 1) \vee([256] 3-[356] 2)) \vee([361] 4-[461] 3) \\
= & ([145][256] 23-[145][356] 22-[245][256] 13+[245][356] 12) \\
& \vee([361] 4-[461] 3)
\end{aligned}
$$

Finish "foiling":

$$
\begin{aligned}
&([145][256] 23-[145][356] 22-[245][256] 13+[245][356] 12) \\
& \vee \vee([361] 4-[461] 3) \\
&=[145][256][361][234]-[145][256][461][233] \\
&-[145][356][361][224]+[145][356][461][223] \\
&-[245][256][361][134]+[245][256][461][133] \\
&+[245][356][361][124]-[245][356][461][123]
\end{aligned}
$$

Q: What happens when two numbers share a bracket?

$$
[233] \leftrightarrow\left|\begin{array}{lll}
x_{12} & x_{13} & x_{13} \\
x_{22} & x_{23} & x_{23} \\
x_{32} & x_{33} & x_{33}
\end{array}\right|
$$

Q: What happens to a matrix with two repeated columns?
It means we get a bunch of cancelling...

$$
\begin{aligned}
& {[145][256][361][234]-[145][256][461][233] } \\
&-[145][356][361][224]+[145][356][461][223] \\
&-[245][256][361][134]+[245][256]][461][133] \\
&+[245][356][361][124]-[245][356][461][123] \\
&=[145][256][361][234]-[245][256][361][134] \\
&+[245][356][361][124]-[245][356][461][123]=0
\end{aligned}
$$

Conclusion:

- Finding defining equations for matroid varieties is HARD.
- The Grassmann-Cayley algebra lets us find some of the defining equations, by using the geometry of the matroids when thought of as point configurations.

Thank-you!

Introduction: What is a matroid?
Problem: Defining equations for matroid varieties
Paradigm shift: Matroids as point configurations
Tool: Grassmann-Cayley algebra

Introduction: What is a matroid?
Problem: Defining equations for matroid varieties
Paradigm shift: Matroids as point configurations
Tool: Grassmann-Cayley algebra

