Defining equations for matroid varieties – using the Grassmann-Cayley algebra

Ashley K. Wheeler

Mount Holyoke College

29 Jan 2020

• Joint w/ Jessica Sidman (MHC) and Will Traves (USNA).

Goal: To find defining equations for matroid varieties.

Introduction

What is a matroid?

Q: Which collections of 3 columns form a basis for the column space of A?

$$A = \begin{pmatrix} -1 & 1 & 2 & 3 & 4 \\ -1 & 1 & 2 & 0 & -2 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix}$$

How can we tell?

Could row reduce A first.

 $\begin{pmatrix} -1 & 1 & 2 & 3 & 4 \\ -1 & 1 & 2 & 0 & -2 \\ 1 & 1 & 1 & 1 & 1 \end{pmatrix} \rightarrow \operatorname{rref} A = \begin{pmatrix} 1 & 0 & -\frac{1}{2} & 0 & \frac{1}{2} \\ 0 & 1 & \frac{3}{2} & 0 & -\frac{3}{2} \\ 0 & 0 & 0 & 1 & 2 \end{pmatrix}$

Preferred way: Look for non-zero **3-minors** of A (or of rref A).

Fact: Columns of an $r \times r$ matrix are linearly independent if and only if the determinant of the matrix is non-zero.

Number the columns of *A* 1 through 5. Here are the 3-minors, according to their column indices:

 $\begin{array}{ll} \{1,2,3\} \rightarrow 0 & \{1,2,4\} \rightarrow -6 & \{1,2,5\} \rightarrow -12 \\ \{1,3,4\} \rightarrow -9 & \{1,3,5\} \rightarrow -18 & \{1,4,5\} \rightarrow -9 \\ \{2,3,4\} \rightarrow 3 & \{2,3,5\} \rightarrow -6 & \{2,4,5\} \rightarrow -11 \\ \{3,4,5\} \rightarrow 0 & \end{array}$

The **matroid** \mathcal{M}_A on A is given by the set: $\mathcal{B} = \{ \text{all 3-tuples except } \{1, 2, 3\} \text{ and } \{3, 4, 5\} \} \subset \{1, \dots, 5\}$ The sets in \mathcal{B} are called **bases** for the matroid \mathcal{M}_A .

Matroids are a generalization of the collections of linearly independent columns of a matrix.

Applications: Where are matroids used?

- Combinatorial optimization: artificial intelligence, machine learning, software engineering; example: travelling salesman problem
- *Coding theory:* error correcting, data compression, cryptography
- *Network theory:* particle physics, biology, social networks; example: bridges of Königsberg problem

Introduction: What is a matroid?

Problem: Defining equations for matroid varieties Paradigm shift: Matroids as point configurations Tool: Grassmann-Cayley algebra

Problem

Defining equations for matroid varieties

Q: Given a matroid on a matrix A, what other matrices have the same matroid as A? (e.g., rref A)

Consider this generic matrix:

$$X = \begin{pmatrix} x_{11} & x_{12} & x_{13} & x_{14} & x_{15} \\ x_{21} & x_{22} & x_{23} & x_{24} & x_{25} \\ x_{31} & x_{32} & x_{33} & x_{34} & x_{35} \end{pmatrix}$$

We want all possible x-values that will give the same matroid (i.e. same columns as bases) as A.

Defining equations are a system of equations in the *x*'s whose solution set minimally cuts out all of the matrices with matroid \mathcal{M}_A .

Call this solution set \mathcal{V}_A , the **matroid variety** on A.

Mnëv (1985), Sturmfels (1989), Knutson, Lam, & Speyer (2013): All "hell" breaks loose when we try to find defining equations for V_A .

Why? Two reasons:

- The Zariski topology (beyond the scope of this talk).
- On the equations are not obvious (as we shall see).

Paradigm shift

Matroids as point configurations

Idea: Think of the columns of A as points in the plane.

The columns of the matrix A are vectors in 3-space, that span lines through the origin.

If we cut these lines with a plane then the lines become points in the plane.

Why would we do this?

Q: What do you notice about the points in relation to the matroid \mathcal{M}_A ?

Points 1, 2, and 3 are collinear if and only if $\{1, 2, 3\}$ is not a basis for \mathcal{M}_A . We say the **bracket** [123] vanishes, or equals 0.

The bracket is shorthand for determinant:

$$[123] = 0 \iff \begin{vmatrix} x_{11} & x_{12} & x_{13} \\ x_{21} & x_{22} & x_{23} \\ x_{31} & x_{32} & x_{33} \end{vmatrix} = 0$$

This is a defining equation in the x's!

Q: What is another defining equation for \mathcal{V}_A ?

Are there others? ???

Example (Ford 2013):

 $\mathcal{M}_{pencil} = matroid on a 3 \times 7 matrix with$ *non* $bases {1, 2, 7}, {3, 4, 7}, {5, 6, 7}$

Q: Which brackets vanish?

background from Euclidea

6

All hell breaks loose: [134][256] - [234][156] = 0 is also a defining equation for $\mathcal{V}_{\text{pencil}}$. How could we have known this?!

Ans: The Grassmann-Cayley algebra.

Tool

Grassmann-Cayley algebra

The Grassmann-Cayley algebra was invented to do *synthetic projective geometry*.

We do arithmetic on the points (vectors) themselves, and obtain expressions in the brackets.

There are two operations:

join (\lor) : refers to the line passing through points

The line joining 1 and 2 is $1 \lor 2$, or 12.

Three points joined makes a bracket, and three collinear points make the bracket vanish.

meet (\land) : refers to the intersection of two lines

The meet of the lines $1 \lor 2$ and $3 \lor 4$ is $(1 \lor 2) \land (3 \lor 4)$, or $12 \land 34$.

The meet operation uses *shuffle products*, which also produce expressions in the brackets.

We have $((1 \lor 2) \land (3 \lor 4)) \lor 5 \lor 6 = 0$, because these three points are collinear. Here's how to apply the shuffles:

$$(12 \land 34) \lor 56 = ([134]2 - [234]1)56$$

= [134][256] - [234][156] = 0

Example: Pascal's theorem says if six points on a conic are joined in the way illustrated below, then the resulting intersection points (7, 8, and 9) are collinear.

5

Q

3

We have a matroid $\mathcal{M}_{\mathsf{Pascal}}$ corresponding to this configuration of points. Let's find defining equations for $\mathcal{V}_{\mathsf{Pascal}}$.

Q: Which brackets vanish?

Theorem (Sidman, Traves, W)

The defining equations for the matroid variety V_{Pascal} include at least one quartic, three independent cubics, and three independent quadrics in the brackets, besides the vanishing brackets [127], [238], [349], [457], [568], [169], [789].

Finding the quartic: The statement of Pascal's theorem says we have $(12 \land 45) \lor (23 \land 56) \lor (34 \land 61) = 0$.

Apply the shuffle products:

 $(12 \land 45) \lor (23 \land 56) \lor (34 \land 61)$ = ([145]2 - [245]1) \lor ([256]3 - [356]2) \lor ([361]4 - [461]3)

Now "foil":

 $\begin{array}{l} (([145]2 - [245]1) \lor ([256]3 - [356]2)) \lor ([361]4 - [461]3) \\ = ([145][256]23 - [145][356]22 - [245][256]13 + [245][356]12) \\ \lor ([361]4 - [461]3) \end{array}$

Q: What happens when two numbers share a bracket?

- + [245][356][361][124] [245][356][461][123]
- [245][256][361][134] + [245][256][461][133]
- [145][356][361][224] + [145][356][461][223]
- \vee ([361]4 [461]3) = [145][256][361][234] - [145][256][461][233]
- ([145][256]23 [145][356]22 [245][256]13 + [245][356]12)

Finish "foiling":

Problem: Defining equations for matroid varieties Paradigm shift: Matroids as point configurations Tool: Grassmann-Cayley algebra

 $[233] \leftrightarrow \begin{array}{cccc} x_{12} & x_{13} & x_{13} \\ x_{22} & x_{23} & x_{23} \\ x_{32} & x_{33} & x_{33} \end{array}$

Q: What happens to a matrix with two repeated columns?

It means we get a bunch of cancelling ...

$$\begin{split} & [145][256][361][234] - \underline{[145][256][461][233]} \\ & - \underline{[145][356][361][224]} + \underline{[145][356][461][223]} \\ & - \underline{[245][256][361][134]} + \underline{[245][256][461][133]} \\ & + \underline{[245][356][361][124]} - \underline{[245][356][461][123]} \end{split}$$

+ [245][356][361][124] - [245][356][461][123] = 0

= [145][256][361][234] - [245][256][361][134]

Introduction: What is a matroid? Problem: Defining equations for matroid varieties Paradigm shift: Matroids as point configurations Tool: Grassmann-Cayley algebra

Conclusion:

- Finding defining equations for matroid varieties is HARD.
- The Grassmann-Cayley algebra lets us find *some* of the defining equations, by using the geometry of the matroids when thought of as point configurations.

