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Week 1 overview

1 Intro to integration techniques
§6.1 Antiderivatives graphically and numerically

� Indefinite integrals
� Sketching antiderivatives
� Families of functions: initial value problems

§6.2 Constructing antiderivatives analytically
� Reverse derivative rules
� Linearity of integrals

§7.1 Integration by substitution
� Reverse chain rule
� Substitution for definite integrals
� Trick: Linear substitutions

§7.2 Integration by parts
� Reverse product rule
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� Exceptions and tricks



Calculus II
(M102)

A. Wheeler
(she/her)

Week 1

§6.1

§6.2

§7.1

§7.2

Week 2

§7.3

§7.4

AP(s)

Week 3

§8.1

§8.2

§7.6

AP(s)

1 Intro to integration techniques
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� Indefinite integrals
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� Families of functions: initial value problems

§6.2 Constructing antiderivatives analytically

§7.1 Integration by substitution

§7.2 Integration by parts
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Indefinite integrals

Recall: definite integrals

Example
Evaluate

∫ 2

0
x2 dx.

Soln: ∫ 2

0

x2 dx =
x3

3

∣∣∣∣2
0

=
(2)3

3
− (0)3

3
=

8

3
.
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Notes:

• No “+C”.

• Answer is a number, not a function.

• Vertical bar indicates the bounds on the integral
have yet to be plugged in.

• Style: Plugged in values are in parentheses (this
makes it easier to read and catch mistakes). Answer
is written as a fraction, and not a decimal
(eliminates rounding errors).
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Recall: The Fundamental Theorem of Calculus

Theorem
If f is continuous on the interval [a, b], and f(t) = F ′(t),
then ∫ b

a

f(t) dt = F (b)− F (a).

? For a refresher, see §5.3.
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Recall: indefinite integrals

Example∫
x2 dx = x3

3
+ C

Notes:

• “+C”.

• No bounds on the integral symbol.

• Answer is a (family of) function(s), and not a
number.
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The “+C” represents the fact that infinitely many
functions can have the same derivative function.

Graphic: Example 1 of §6.1.
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Notes:

• The derivative function is constant from 0 ≤ x ≤ 2.
This means the slope of f(x) should also be
constant.

• The function f ′(x) changes from positive to
negative at x = 4. This means the functions f(x)
should have a local max at x = 4 (recall: Calc I).

• The difference between the two f(x)s is where they
begin, or their values for f(0).
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Sketching antiderivatives

Example (§6.1 #22)
Using Figure 6.15, sketch a graph of an antiderivative
G(t) of g(t) satisfying G(0) = 5. Label each critical
point of G(t) with its coordinates.

Graphic: §6.1 #22
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Soln:

Graphic: solution to §6.1 #22

Q: Where are the inflection points?
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Families of functions: initial

value problems

In practice (a.k.a. real life), we’re given information
about the derivative of something and we have to find
the original function.

Example (Finding the right “+C”)
Find f(x), given that:

f ′(x) = 3x2 and f(1) = 3︸ ︷︷ ︸
called an initial value
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Soln: Use an indefinite integral first:∫
f ′(x) dx =

∫
3x2 dx = x3 + C︸ ︷︷ ︸

f(x)

Use the initial value to solve for the correct C:

f(1) = 13 + C = 3

=⇒ C = 3− 1 = 2

The conclusion is that f(x) = x3 + 2.

? In Differential Equations (M333) it gets more
complicated!
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1 Intro to integration techniques
§6.1 Antiderivatives graphically and numerically

§6.2 Constructing antiderivatives analytically
� Reverse derivative rules
� Linearity of integrals

§7.1 Integration by substitution

§7.2 Integration by parts
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Reverse derivative rules

Reverse power rule:∫
xn dx =

xn+1

n+ 1
+ C, n 6= −1

Q: Why can’t n = −1?

n = −1 case: ∫
1

x
dx = ln |x|+ C

Q: Why do we need absolute values?
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Ans: Because x cannot be negative in the natural log
function.

Graphic: Natural log function.
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Exponential function:∫
ex dx = ex + C

Sine & cosine: ∫
sinx dx = − cosx+ C∫
cosx dx = sinx+ C
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More: ∫
sec2 x dx = tanx+ C∫
csc2 x dx = − cotx+ C ... etc.

Q: What is
∫

2x dx?

Later: ∫
tanx dx (§7.1)∫
lnx dx (§7.2)
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Linearity of integrals

Linearity of integrals means the following two conditions
hold:

•
∫

(f(x) + g(x)) dx =
∫
f(x) dx+

∫
g(x) dx

•
∫
cf(x) dx = c

∫
f(x) dx, where c is a constant

Q: Where have you seen this property before?

Linearity also holds for definite integrals.
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Linearity lets us integrate polynomials.

Example (§6.2 #24)
Find

∫
(x2 − 4x+ 7) dx.
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Soln:∫
(x2 − 4x + 7) dx =

∫
x2 dx +

∫
(−4x) dx +

∫
7 dx

=

∫
x2 dx− 4

∫
x dx + 7

∫
x0 dx

=

(
x3

3
+ C1

)
− 4

(
x2

2
+ C2

)
+ 7

(
x1

1
+ C3

)
=

x3

3
− 2x2 + 7x + C,

where C1 +−4C2 + 7C3 gets absorbed into one arbitrary constant,
C.
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The reverse power rule lets us integrate radicals.

Example (§6.2 #54)
Find the general antiderivative of

√
x3 − 2

x
.
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Soln:∫ (√
x3 − 2

x

)
dx =

∫ √
x3 dx+

∫
−2

x
dx

=

∫
x

3
2 dx− 2

∫
1

x
dx

=
x

5
2

5
2

− 2 ln |x|+ C

=
2

5
x

5
2 − 2 ln |x|+ C

Again, the constants from each individual integral get
absorbed into one big constant C.
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1 Intro to integration techniques
§6.1 Antiderivatives graphically and numerically

§6.2 Constructing antiderivatives analytically

§7.1 Integration by substitution
� Reverse chain rule
� Substitution for definite integrals
� Trick: Linear substitutions

§7.2 Integration by parts
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Reverse chain rule

Here’s the idea. Recall, the chain rule is used to
differentiate compositions of functions:

d

dx
f(g(x)) = f ′ (g(x))︸ ︷︷ ︸

w

· g′(x)︸︷︷︸
w′

=
df

dw
· dw
dx
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To integrate,∫ (
d

dx
f(g(x))

)
dx = f(g(x)) + C ← want

=

∫
df

dw
· dw
��dx
��dx

=

∫
f ′(w) dw.

Hopefully, it makes the integral easier. The trick is
finding out what w is.
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Example∫
3x2 cos (x3) dx

Soln: Let w = x3 =⇒ dw
dx

= 3x2. Match to the original
integral: ∫

f ′(w) · 3x2 dx︸ ︷︷ ︸
dw

Q: What is f ′(w)?
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Ans: cosw, since w = x3.

Replace the integral and evaluate:∫
cosw dw = sinw + C

Put the xs back:

sinw + C = sin (x3) + C

Check: d
dx

sin (x3) = 3x2 cos (x3)
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Substitution for definite

integrals

Method 1: Keep the bounds in terms of x until x is
substituted back in.

Example (§7.1 #60)
Evaluate

∫ 1
2

0
cos (πx) dx.
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Soln: Let w = πx =⇒ dw
dx

= π. We have∫ 1
2

0

cos (πx) dx =

∫ x= 1
2

x=0

cosw · 1

π
dw︸ ︷︷ ︸

solving for dx

=
1

π
sinw

∣∣∣∣x= 1
2

x=0

=
1

π
sin (πx)

∣∣∣∣ 12
0

=
1

π

(
sin
(π

2

)
− sin(0)

)
=

1

π
.
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Method 2: Change the bounds on the integral to match
the new variable w, then integrate normally.

Example (§7.1 #64)
Evaluate

∫ e−2

−1
1
t+2

dt.

Soln: Let w = t+ 2 =⇒ dw
dt

= 1. Since w is a function
of t, we also have

t = −1 =⇒ w(−1) = −1 + 2 = 1

t = e− 2 =⇒ w(e− 2) = e− 2 + 2 = e.
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The integral becomes∫ e−2

−1

1

t+ 2
dt =

∫ e

1

1

w
dw

= ln |w|
∣∣∣∣e
1

= ln |e| − ln |1|
= 1.
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Trick: Linear substitutions

Recall: A linear function is a function of the form
f(x) = mx+ b. Substitution can be used to integrate
functions that have a linear part that is in a denominator
or nested under a radical sign.

Example (§7.1 #77)∫
x2
√
x− 2 dx

? See §7.1 Example 13 and #73-80. See also Example
12 for a more complicated example.
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Soln: Let w = x− 2 =⇒ dw = dx and x = w + 2.∫
x2
√
x− 2 dx =

∫
(w + 2)2

√
w dw

=

∫
(w2 + 4w + 4)

√
w dw

=

∫
(w

5
2 + 4w

3
2 + 4w

1
2 ) dw

=
2

7
w

7
2 +

8

5
w

5
2 +

8

3
w

3
2 + C
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1 Intro to integration techniques
§6.1 Antiderivatives graphically and numerically

§6.2 Constructing antiderivatives analytically

§7.1 Integration by substitution

§7.2 Integration by parts
� Reverse product rule
� Choosing u and dv
� Exceptions and tricks
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Reverse product rule

Here’s the idea. Recall, the product rule is used to
differentiate products of functions, call those functions u and
v (instead of the usual f and g):

u′(x)v(x) + u(x)v′(x) =
d

dx
(u(x)v(x))

Rewrite the derivatives u′(x), v′(x) in Leibniz notation.
Then integrate both sides:∫

du

��dx
v(x)��dx +

∫
u(x)

dv

��dx
��dx = u(v)v(x) + C
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Now move the first integral to the other side to get∫
u dv = uv −

∫
v du+ C.

This technique is called integration by parts, or IBP.

Notes:

• Pneumonic device: “ultraviolet voodoo”.

• The “+C” can go away, since another one will come
out of the integral

∫
v du.
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• Keep in mind u, v are still functions of x; du and dv
are functions of x multiplied by dx.

• The new integral that appears should be “easier”
than the original integral.

• The trick is in figuring out which function in the
integrand is u, and which function is dv.
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Example (§7.2 #10)∫
x3 lnx dx

Soln: Put u = lnx and dv = x3 dx. Then we can set
v = x4

4
, since it has the derivative we want, dv

dx
= x3, so

that dv = x3 dx. We also have du
dx

= 1
x

=⇒ du = 1
x
dx.
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Plug u, v, du, and dv into the ultraviolet voodoo
formula. Then evaluate the new integral.∫

(lnx)︸ ︷︷ ︸
u

x3 dx︸ ︷︷ ︸
dv

= (lnx)︸ ︷︷ ︸
u

x4

4︸︷︷︸
v

−
∫

x4

4︸︷︷︸
v

1

x
dx︸ ︷︷ ︸
du

=
x4

4
lnx− 1

4

∫
x3 dx

=
x4

4
lnx− x4

16
+ C
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Choosing u and dv

How do we know what to choose for u and what to
choose for dv? Here’s what we want:

• The choice for dv should make v something easy to
find.

• We don’t want v to be more complicated than dv
dx

.

• We don’t want du
dx

to be more complicated than u.
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There’s also a pneumonic device!

Log PoET

u←→ dv

• Log = logarithmic functions

• Po = polynomial functions (constants, including 1,
count as polynomials)

• E = exponential functions (ex, 2x, etc.)

• T = trigonometric functions
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Exceptions and tricks

Example (§7.2 #13)∫
sin2 x dx

Soln: Let u = sinx and dv = sinx dx. Then
du = cosx dx and v = − cosx. We have∫

sin2 x dx = (sinx)(− cosx)−
∫

(− cosx)(cosx dx)

= − sinx cosx+

∫
cos2 x dx.

Use the trig identity sin2 x+ cos2 x = 1 to replace the
cos2 x.
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∫
sin2 x dx = − sinx cosx +

∫
(1− sin2 x) dx

= − sinx cosx +

∫
1 dx−

∫
sin2 x dx.

There is a
∫

sin2 x dx on both sides of the equation, so solve
for it!

2

∫
sin2 x dx = − sinx cosx +

∫
1 dx

=⇒
∫

sin2 x dx =
1

2

(
− sinx cosx +

∫
1 dx

)
=

1

2
(− sinx cosx + x) + C

? Check that d
dx

(
1
2 (− sinx cosx + x)

)
= sin2 x!
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Other tricks:

• The same “solve for the integral” trick can be used
to integrate eax sin(bx) or eax cos(bx).

? See Example 7 in §7.2.

• IBP can be used to integrate lnx by writing
lnx = 1 · lnx, then letting u = lnx and dv = 1 · dx
(and similarly to integrate arctanx).

? See Example 3.

• Sometimes it’s necessary to do IBP more than once
to get a complete answer.

? See Example 5.
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Week 2 overview

2 Advanced integration techniques
§7.3 Tables of integrals

� The table
� Products of powers of sines and cosines
� Long division of polynomials

§7.4 Algebraic identities and trigonometric substitutions
� Partial fractions: the idea
� Common denominator backwards
� How to integrate
� Irreducible quadratic forms
� Completing the square
� Trig substitutions
� Example: invoking the triangle
� Another example

Application problem(s)
� (1) §7.3 #44 (Stewart)
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2 Advanced integration techniques
§7.3 Tables of integrals

� The table
� Products of powers of sines and cosines
� Long division of polynomials

§7.4 Algebraic identities and trigonometric substitutions

Application problem(s)
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The table

A short table of integrals is at the back of the textbook.
You can use it to help solve more complicated integrals.
A very comprehensive list of complicated integrals is
given at integral-table.com. There is also a
˜printable version˜, typeset using LATEX!

integral-table.com
http://integral-table.com/downloads/single-page-integral-table.pdf
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Note: The table can’t be used unless the integral is in
the right form. Here are some techniques to use:

• Substitution. Linear substitutions are especially
helpful.

• Trig identities. E.g.,∫
sin2 x dx =

∫
1
2
(1− cos 2x) dx.

• Log algebra. See the rules of natural logarithms in
the front cover of the text.

? See §7.3 Example 10.

• Complete the square.

? See Example 8.
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Products of powers of sines

and cosines

Example∫
sin2 x cos2 x dx

Guidelines for
∫

sinm x cosn x dx, with m,n > 0:

• If both m, n are even, use sin2 x + cos2 x = 1 to
convert the integral into either all sines or all cosines.

• If one or both of m, n is odd, then use a substitution
w = cosx or w = sinx for the other function. Then
again use sin2 x + cos2 x = 1 to convert as much as
possible into the function that appears an odd number
of times.
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Soln:∫
sin2 x cos2 x dx =

∫
sin2 x(1− sin2 x) dx

=

∫
sin2 x dx−

∫
sin4 x dx

Now use the identity from the table∫
sinn x dx = − 1

n
sinn−1 x cosx+

n− 1

n

∫
sinn−2 x dx

applied with n = 2 and n = 4. Note that sin0 x = 1.
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(
−1

2
sinx cosx +

1

2

∫
dx

)
︸ ︷︷ ︸∫

sin2 x dx

−
(
−1

4
sin3 x cosx +

3

4

∫
sin2 x dx

)
︸ ︷︷ ︸∫

sin4 x dx

=− 1

2
sinx cosx +

1

2
x +

1

4
sin3 x cosx

− 3

4

(
−1

2
sinx cosx +

1

2

∫
dx

)
=− 1

2
sinx cosx +

1

2
x +

1

4
sin3 x cosx

+
3

8
sinx cosx− 3

8
x + C
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Long division of polynomials

Recall, a rational function is a function of the form

f(x) =
polynomial

another polynomial
.

The degree of a polynomial is the highest power that
appears.

If the degree of the numerator is greater than or equal to the
degree of the denominator, then we can use long division to
make integration easier.

For now we only consider rational functions where the degree
of the denominator is at most 2. The bigger cases will be
considered in §7.4.
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Example∫
x2+1

x2−5x+4
dx

Soln: Use long division to make the degree of the numerator
smaller:

1

x2 − 5x + 4
)

x2 + 1
− x2 + 5x− 4

5x− 3

? For a refresher on long division of polynomials, ˜these
notes by Scott Pike at Mesa Community College˜ contain
examples and practice problems with solutions!

https://www.mesacc.edu/~scotz47781/mat120/notes/divide_poly/long_division/long_division.html
https://www.mesacc.edu/~scotz47781/mat120/notes/divide_poly/long_division/long_division.html


Calculus II
(M102)

A. Wheeler
(she/her)

Week 1

§6.1

§6.2

§7.1

§7.2

Week 2

§7.3

§7.4

AP(s)

Week 3

§8.1

§8.2

§7.6

AP(s)

This means

x2 + 1

x2 − 5x + 4
= 1 +

5x− 3

x2 − 5x + 4
.

Now notice the denominator factors:

x2 − 5x + 4 = (x− 4)(x− 1)

So we use the table identity∫
cx + d

(x− a)(x− b)
=

1

a− b
((ac + d) ln |x− a|

−(bc + d) ln |x− b|) + C,

applied with a = 4, b = 1, c = 5, d = −3.



Calculus II
(M102)

A. Wheeler
(she/her)

Week 1

§6.1

§6.2

§7.1

§7.2

Week 2

§7.3

§7.4

AP(s)

Week 3

§8.1

§8.2

§7.6

AP(s)

We have∫
x2 + 1

x2 − 5x + 4
dx =

∫
dx +

∫
5x− 3

(x− 4)(x− 1)
dx

= x +
1

4− 1
(((4)(5) + (−3)) ln |x− 4|

−((1)(5) + (−3)) ln |x− 1|) + C

= x +
1

3
(17 ln |x− 4| − 2 ln |x− 1|) + C.
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2 Advanced integration techniques
§7.3 Tables of integrals

§7.4 Algebraic identities and trigonometric substitutions
� Partial fractions: the idea
� Common denominator backwards
� How to integrate
� Irreducible quadratic forms
� Completing the square
� Trig substitutions
� Example: invoking the triangle
� Another example

Application problem(s)
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Partial fractions: the idea

Partial fractions is the reverse method of getting a
common denominator.

It is used to integrate rational functions whose numerator
has degree smaller than the denominator (this means if
the numerator has degree greater than or equal to the
degree of the denominator, you must do long division
first).

Partial fractions relies on the following important
theorem from algebra:
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Theorem (Fundamental Theorem of Algebra)
Every polynomial with real coefficients factors into a
product of linear and irreducible quadratic forms.

This means that no matter the degree of a polynomial, it
will always factor into a product of linear (mx+ b) and
quadratic (degree 2) pieces.

Example
x3 + 1 = (x+ 1)︸ ︷︷ ︸

linear

(x2 − x+ 1)︸ ︷︷ ︸
irreducible quadratic
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Common denominator

backwards

Example
Suppose the polynomial x2 − 5x+ 4 = (x− 4)(x− 1) is
in the denominator of a rational function that we wish to
write in terms of partial fractions.

1

x2 − 5x+ 4
=

A

x− 4
+

B

x− 1

Soln: To find A and B, first get a common denominator
on the right hand side of the equation. Then set the
numerators of both sides equal to each other.
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1

x2 − 5x+ 4
=

A

x− 4

(
x− 1

x− 1

)
+

B

x− 1

(
x− 4

x− 4

)
=

Ax− A
x2 − 5x+ 4

+
Bx− 4B

x2 − 5x+ 4

=
(A+B)x+ (−A− 4B)

x2 − 5x+ 4

=⇒ 1 = (A+B)x+ (−A− 4B)

Since the left hand side of the equation doesn’t have any
xs, we must have A+B = 0. That means we also must
have −A− 4B = 1.
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We get a system of equations, 2 equations with 2 unknowns:

A + B = 0

−A− 4B = 1

Use the first equation to get A = −B, then substitute into
the second equation:

−A− 4B = 1

−(−B)− 4B = 1

−3B = 1

=⇒ B = −1

3
=⇒ A =

1

3
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The conclusion is that

1

x2 − 5x+ 4
=

1
3

x− 4
+
−1

3

x− 1

=
1

3(x− 4)
− 1

3(x− 1)
.
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We can check this by finding a common denominator:

1

3(x− 4)
− 1

3(x− 1)
=

1

3(x− 4)

(
x− 1

x− 1

)
− 1

3(x− 1)

(
x− 4

x− 4

)
=
�x− 1− (�x− 4)

3(x2 − 5x+ 4)

=
�3

�3(x2 − 5x+ 4)

=
1

x2 − 5x+ 4
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How to integrate

Why does this work for integration?

We have∫
1

x2 − 5x+ 4
=

1

3

∫
1

x− 4
dx− 1

3

∫
1

x− 1
dx.
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On the right hand side, use w = x− 4 on the first
integral and w = x− 1 on the second integral to get∫

1

x2 − 5x+ 4
=

1

3
ln |x− 4| − 1

3
ln |x− 1|+ C,

which can be verified by the table identity (a 6= b)∫
1

(x− a)(x− b)
=

1

a− b
(ln |x− a| − ln |x− b|) + C

with a = 4 and b = 1.
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Irreducible quadratic forms

When the denominator of a rational function has an
irreducible quadratic factor, the method of partial
fractions changes. We write

1

(x− a)(x2 + bx+ c)
=

A

x− a
+

Bx+ C

x2 + bx+ c

(note the captial and small letters are distinct).

The reason is that we want the largest possible degree
numerator for each term of the right hand side.
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Example (§7.4 #4)∫
2y

y3−y2+y−1
dy

Here, the numerator does not have a 1, but the method
is the same. To factor the denominator, use a site like
˜MathPapa’s factoring polynomials calculator˜ to get

y3 − y2 + y − 1 = (y − 1)(y2 + 1).

https://www.mathpapa.com/factoring-calculator/
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Partial fractions the integrand to get

2y

y3 − y2 + y − 1
=

A

y − 1
+
By + C

y2 + 1

=
A

y − 1

(
y2 + 1

y2 + 1

)
+
By + C

y2 + 1

(
y − 1

y − 1

)
=

(Ay2 + A) + (By2 + Cy −By − C)

y3 − y2 + y − 1

=⇒ 2y = (A+B)y2 + (−B + C)y + (A− C)
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The system of equations is

A+B = 0

−B + C = 2

A− C = 0.

The solutions are A = 1, B = −1, C = 1.
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The integral becomes∫
2y

y3 − y2 + y − 1
dy =

∫
1

y − 1
dy −

∫
y

y2 + 1
dy

+

∫
1

y2 + 1
dy

= ln |y − 1| − 1

2
ln(y2 + 1)

+ arctan y + C

where in the second integral, w = y2 + 1 is used.
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If a denominator has repeated factors then the method of
partial fractions must be modified again.

Example

1

(x− 1)3(x2 + 1)2
=

A

x− 1
+

B

(x− 1)2
+

C

(x− 1)3︸ ︷︷ ︸
one term for each x− 1

+
Dx+ E

x2 + 1
+

Fx+G

(x2 + 1)2︸ ︷︷ ︸
one term for each x2 + 1

? See §7.4 Example 3.
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Completing the square

Sometimes integrating an irreducible quadratic in the
denominator does not immediately lead to the arctan
function.

Complete the square rewrites a quadratic polynomial as
follows:

x2 + bx+ c = x2 + bx+

(
b

2

)2

+ c−
(
b

2

)2

=

(
x+

b

2

)2

+ c−
(
b

2

)2

• Notice there is no coefficient on the x2 term.
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Example (§7.4 #30)∫
dx

x2+2x+2

Soln: Complete the square in the denominator:

x2 + 2x+ 2 = x2 + 2x+ 12 + 2− 12

= (x+ 1)2 + 1

Now let w = x+ 1 to finish solving the integral.
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Trig substitutions

Guidelines:

• If the integrand contains
√
a2 − x2 for some

constant a, then put

x = a sin θ =⇒ dx = a cos θ dθ.

This implies θ = arcsin x
a

on the interval
−a ≤ x ≤ a if we assume −π

2
≤ θ ≤ π

2
. We get

√
a2 − x2 =

√
a2 − a2 sin2 θ = a cos θ.
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• If the integrand contains x2 + a2 or
√
x2 + a2, then

put
x = a tan θ =⇒ dx = a sec2 θ dθ.

Assume −π
2
< θ < π

2
so that θ = arctan x

a
for all x.

We get

x2 + a2 = a2 tan2 θ + a2 = a2 sec2 θ.

? The substitution x = a sec θ for x2 − a2 also exists, but
we will not cover those examples in this course.
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Example: invoking the

triangle

Example (§7.4 #58)∫
1

x
√

9−4x2
dx

Soln: The expression under the radical sign is not of the
form a2 − x2 so we first need to rewrite it:

√
9− 4x2 =

√
4

(
9

4
− 4

4
x2

)

= 2

√(
3

2

)2

− x2
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=⇒
∫

1

x
√

9− 4x2
dx =

1

2

∫
1

x
√(

3
2

)2 − x2

dx

Put x = 3
2

sin θ. Then dx = 3
2

cos θ dθ. The integral
becomes

1

2

∫ 3
2

cos θ dθ
3
2

sin θ
(

3
2

cos θ
) =

1

3

∫
dθ

sin θ
.
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From the table, we have

1

3

∫
dθ

sin θ
=

1

6
ln

∣∣∣∣cos θ + 1

cos θ − 1

∣∣∣∣+ C.

But we aren’t done! The answer should be written in
terms of x, not θ.

How do we know cos θ in terms of x, when we’re only
given x = 3

2
sin θ?

The answer is to invoke the triangle. We want a right
triangle with angle θ such that sin θ = 2x

3
.
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Graphic: Triangle with sin θ = 2x
3

.

From the picture, we conclude cos θ =
√

9−4x2

3
. Plug that

into the final equation:

1

6
ln

∣∣∣∣cos θ + 1

cos θ − 1

∣∣∣∣+ C =
1

6
ln

∣∣∣∣∣
√

9−4x2

3
+ 1

√
9−4x2

3
− 1

∣∣∣∣∣+ C.
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Another example

Example (§7.4 #63)∫
x2

(1 + 9x2)
3
2

dx

Soln: The 3
2

in the exponent is really a cube over a
radical sign. Rewrite the denominator:

(1 + 9x2)
3
2 =

(√
1 + 9x2

)3

=

(√
9

(
1

9
+ x2

))3

= 27

√(1

3

)2

+ x2

3
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To integrate, put x = 1
3

tan θ. Then dx = 1
3

sec2 θ dθ.∫
x2

27

(√(
1
3

)2
+ x2

)3 dx =

∫ (
1
3

tan θ
)2

27(1
3

sec θ)3

(
1

3
sec2 θ

)
dθ

=
1

27

∫
tan2 θ

sec θ
dθ

=
1

27

∫ sin2 θ

cos�2 θ
1
��cos θ

dθ

=
1

27

∫
sin2 θ

cos θ
dθ
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Use the identity sin2 θ + cos2 θ = 1 and then the table
for
∫

1
cos θ

dθ.

1

27

∫
sin2 θ

cos θ
dθ =

1

27

∫
1− cos2 θ

cos θ
dθ

=
1

27

(∫
1

cos θ
dθ −

∫
cos θ dθ

)
=

1

27

(
1

2
ln

∣∣∣∣sin θ + 1

sin θ − 1

∣∣∣∣− sin θ

)
+ C

Invoke the triangle to write the answer in terms of x. We
have x = 1

3
tan θ so we want tan θ = 3x = 3x

1
.
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Graphic: Triangle with tan θ = 3x
1

.

From the Pythagorean theorem and the picture, we
conclude sin θ = 3x√

1+9x2
.

1

27

(
1

2
ln

∣∣∣∣sin θ + 1

sin θ − 1

∣∣∣∣− sin θ

)
+ C

=
1

54

(
ln

∣∣∣∣∣
3x√

1+9x2
+ 1

3x√
1+9x2

− 1

∣∣∣∣∣− 3x√
1 + 9x2

)
+ C
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2 Advanced integration techniques
§7.3 Tables of integrals

§7.4 Algebraic identities and trigonometric substitutions

Application problem(s)
� (1) §7.3 #44 (Stewart)
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(1) §7.3 #44 (Stewart)

A water storage tank has the shape of a cylinder with
diameter 10 ft. It is mounted so that the circular
cross-section is vertical. If the depth of the water is 7 ft,
what percentage of the total capacity is being used?

Graphic: Water storage tank filled to 7 ft.
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Hint: Try to visualize the problem in two dimensions.

Soln: We can look at one circular cross-section at a
time. The percentage capacity used to fill the circle to 7
ft will equal the percentage capacity used in the
cylindrical tank.

The problem then translates into a problem about the
area between two curves. One is a circle, corresponding
to the tank. The other is a line, corresponding to the top
of the water.
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The circle has diameter 10 ft, so use the circle
x2 + y2 = 25. It is centered on the origin. The line
representing the top of the water is y = 2, since it is 7
units above the bottom of the circle.

Graphic: Vertical cross-section of the cylindrical tank.
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We run into a problem trying to find the shaded area.
The bottom portion of the circle includes the bottom
half, and part of the top half. It’s not given by an explicit
equation (i.e., y = an expression in only xs).

However, the top portion is a subset of the top half of
the circle, so we can use the equation y =

√
25− x2.

We will need to find the area between the top portion of
the circle and the line y = 2, then take the difference
from the total area of the circle (25π) to get the area of
the shaded region.
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To find the area, we set up an integral. We first need to
find the bounds by setting the equations of the curves
equal to each other:

y =
√

25− x2 = 2

25− x2 = 4

=⇒ 21 = x2 =⇒ x = ±
√

21

Now we evaluate the integral∫ √21

√
21

√
25− x2 − 2 dx = 2

∫ √21

0

√
25− x2 − 2 dx,

since the integrand is an even function (symmetric about
the y-axis).
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To evaluate the integral, use linearity and then the trig
substitution x = 5 sin θ. Note that since we are doing a
substitution for a definite integral, we must change the
bounds. We have θ = arcsin x

5
. The integral becomes

2

∫ √21

0

√
25− x2 dx− 2

∫ √21

0

2 dx

= 2

∫ arcsin
√
21
5

arcsin 0
5

(5 cos θ)(5 cos θ dθ)− 4x

∣∣∣∣
√

21

0

= 50

∫ arcsin
√
21
5

0

cos2 θ dθ − 4
√

21

(arcsin 0 = 0).
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Now use the table:

50

∫ arcsin
√

21
5

0

cos2 θ dθ − 4
√

21

= 50

(
sin 2θ

4
+
θ

2

) ∣∣∣∣arcsin
√
21
5

0

− 4
√

21

= 50

sin
(

2 arcsin
√

21
5

)
4

+
arcsin

√
21
5

2

− 4
√

21
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Subtracting from the area of the entire circle, we get the
area of the shaded region. Then we divide by the area of
the entire circle to get a percentage:

25π −
(

50

(
sin
(

2 arcsin
√
21
5

)
4

+
arcsin

√
21
5

2

)
− 4
√

21

)
25π

≈ 0.748,

or 74.8%.
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Week 3 overview

3 Applications of integration
§8.1 Areas and volumes

� Recall: Riemann sums
� Areas and volumes of shapes
� Recall: trig substitution

§8.2 Applications to geometry
� Volumes by discs
� Volumes by rings
� Volumes of regions of known cross-section
� Arc length

§7.6 Improper integrals
� Infinite bounds
� Singularities in the integrand

Application problem(s)
� (1) §8.2 #30 (Stewart)
� (2) §8.2 #40 (Lial, et al.)
� (3) §7.6 #50
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Week 3 overview (cont.)
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3 Applications of integration
§8.1 Areas and volumes

� Recall: Riemann sums
� Areas and volumes of shapes
� Recall: trig substitution

§8.2 Applications to geometry

§7.6 Improper integrals

Application problem(s)
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Recall: Riemann sums

A general Riemann sum for f on the interval [a, b] is of
the form ∫ b

a

f(t) dt ≈
n∑
i=1

f(ci)∆ti.

Notes:

• The number of rectangles under the curve is n. As
the number of rectangles gets bigger, we get a
better approximation of the integral. We get the
exact answer when we take limn→∞.

• a = t0 < t1 < · · · < tn−1 < tn = b
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Graphic: Area under the curve approximation with a general
Riemann sum.

• For i = 1, . . . , n the endpoints of Rectangle #i are ti−1

and ti. The thickness of Rectangle #i is
∆ti = ti − ti−1, and ci is a number between ti−1 and ti.

• The ∆tis don’t have to all be the same size.

• The f(ci)s give the height of the rectangles, and don’t
have to all be the same height.

? For refresher on Riemann sums, see §5.1-5.2.
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Areas and volumes of shapes

? We will focus on volumes. See §8.1 Examples 1-2 for
an alternate method of finding the area of a triangle and
a semicircle (that uses Riemann sums!).

Riemann sums for the area under the curve work because
we are adding up areas of rectangles, and the area of a
rectangle has an easy formula.

We can apply the same idea to approximating the volume
of solid shapes.
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Example (§8.1 #17)
Write a Riemann sum and then a definite integral
representing the volume of the region, using the slice
shown. Evaluate the integral exactly.

Graphic: Solid semicircle volume approximated using
strips.
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Graphic: Solid semicircle volume approximated using
strips.

Soln: The solid is divided into approximate boxes. The
volume of a box is length × width × height.

Each box has height ∆y. The width is given as 10m.
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To find the length of each box, we need to look at a
cross section of the solid.

Graphic: Semicircle cross-section of solid.

We want to find the length 2x. The radius of the solid is
7 m, so gives the hypotenuse of the right triangle shown.
The Pythagorean theorem says

2x = 2
√

72 − y2.
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The number of boxes used is arbitrary, so we suppress
the is in the notation. The Riemann sum is∑(

2
√

72 − y2
)

︸ ︷︷ ︸
length

(10)︸︷︷︸
width

(∆y)︸ ︷︷ ︸
height

.

To write the definite integral, look at the range on y.
The minimum value is 0 and the maximum value is 7.
The definite integral is

lim
∆y→0

20
∑√

72 − y2 ∆y = 20

∫ 7

0

√
72 − y2 dy.
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Recall: trig substitution

Now we evaluate the integral using a trig substitution.
Put y = 7 sin θ. Then dy = 7 cos θ dθ, and θ = arcsin y

7
.

20

∫ 7

0

√
72 − y2 dy = 20

∫ arcsin 7
7

arcsin 0
7

7 cos θ (7 cos θ dθ)

= 980

∫ π
2

0

cos2 θ dθ

Note that arcsin 1 = π
2

.
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Use the table of integrals:

980

∫ π
2

0

cos2 θ dθ = 980

(
1

2
cos θ sin θ

∣∣∣∣π2
0

+
1

2

∫ π
2

0

dθ

)
= 490

(
��

���
���

�
cos
(π

2

)
sin
(π

2

)
+
(π

2
− �0
))

= 245π m3.

? Check that this is consistent with the formula for the
area of a half cylinder!
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3 Applications of integration
§8.1 Areas and volumes

§8.2 Applications to geometry
� Volumes by discs
� Volumes by rings
� Volumes of regions of known cross-section
� Arc length

§7.6 Improper integrals

Application problem(s)



Calculus II
(M102)

A. Wheeler
(she/her)

Week 1

§6.1

§6.2

§7.1

§7.2

Week 2

§7.3

§7.4

AP(s)

Week 3

§8.1

§8.2

§7.6

AP(s)

Volumes by discs

Example (§8.2 #44)
Consider the region R bounded by the curve y = x2, the
line y = 1, and the y-axis, with x ≥ 0. Find the volume
of the solid obtained by rotating R around the y-axis.

Graphic: Region R of the parabola to be rotated about
the y-axis.
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Soln: The solid can be divided into approximate discs
(flat cylinders) whose volumes we can sum.

Graphic: Parabola rotated about the y-axis.

The volume of a cylinder is

(area of a circle) × (thickness of the cylinder).

The thickness of one of the discs is ∆y. We need to find
the radius.
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Graphic: Parabola rotated about the y-axis.

The equation y = x2 gives the height of one of the discs.
To find the length we need the x-coordinate of the
boundary of the disc. We find it by solving for x:

y = x2 =⇒ x =
√
y

The volume of one disc is π
(√

y
)2

∆y.



Calculus II
(M102)

A. Wheeler
(she/her)

Week 1

§6.1

§6.2

§7.1

§7.2

Week 2

§7.3

§7.4

AP(s)

Week 3

§8.1

§8.2

§7.6

AP(s)

The total volume is

π lim
∆y→0

∑
y ∆y = π

∫ 1

0

y dy

= π
y2

2

∣∣∣∣1
0

=
1

2
π.

The bounds on the integral come from the fact that R is
bounded by the x-axis (y = 0) and the line y = 1.

? See also §8.2 Examples 1-2.
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Volumes by rings
Example (§8.2 #45)
R from the previous example is now rotated around the
x-axis. Find the volume of the solid.

Graphic: Region R to be rotated about the x-axis.

Soln: The vertical cross sections of the solid are rings.
The volume of a ring is

π
(
(outer radius)2 − (inner radius)2)× (thickness).
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The thickness of a ring is ∆x. We can find the inner and
outer radii by looking at a flat cross section of the solid.

Graphic: Cross-section of the solid.

The inner radius is the height of the curve, y = x2. The
outer radius is given by the line y = 1, so is 1.
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To find the bounds for the integral we look at the min
and max values of x for R.

R is bounded by the y-axis so the lower bound is x = 0.

On the right R is bounded where the line y = 1 meets
the curve y = x2. Setting 1 = x2 gives x = ±1 but we
take the positive value, since x ≥ 0.
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The volume is

π lim
∆x→0

∑(
12 − (x2)2

)
∆x = π

∫ 1

0

(
1− x4

)
dx

= π

(
x− x5

5

)∣∣∣∣1
0

= π

(
1− 1

5

)
=

4

5
π.

? See also §8.2 Example 3.
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Volumes of regions of known

cross-section

Example (§8.2 #54)
Consider the region R bounded by the curve y = ex, the
x-axis, and the lines x = 0 and x = 1. Find the volume of
the solid whose cross-sections perpendicular to the x-axis are
semicircles.

Graphic: Region R cut out by y = ex, x = 1, and the axes.
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The semicircles come out of the plane (the z-axis), with the
long edges parallel to the y-axis. In the picture, the xy-plane
is rotated upside-down.

Graphic: Semicircles on top of the region R.

The radius of a semicircle is half the height of the curve
y = ex, so is ex

2 .
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The volume of one semicircle wedge is

1

2
π(radius)2(thickness).

The thickness of one semicircle is ∆x. The volume is

1

2
π lim

∆x→0

∑(
ex

2

)2

∆x =
π

2

∫ 1

0

e2x

4
dx.
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To integrate, use w = 2x, so that dx = 1
2
dw, w(0) = 0,

and w(1) = 2.

π

8

∫ 2

0

ew

2
dw =

π

16
ew
∣∣∣2
0

=
π

16

(
e2 − 1

)
? See also §8.2 Example 4.
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Arc length

Q: How do we measure the length of a piece of string
when we can’t stretch it straight?

Ans: Divide it into tiny lengths, so that each tiny length
is the hypotenuse of a right triangle with sides ∆x and
∆y.

From Calc I, we have ∆y
∆x
≈ dy

dx
, so we can write

∆y ≈ dy
dx

∆x.
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Suppose the piece of string is given by the curve
y = f(x). Use the Pythagorean theorem to find a tiny
length:

tiny length ≈
√

(∆x)2 + (∆y)2

≈

√
(∆x)2 +

(
dy

dx
∆x

)2

=

√
(∆x)2 +

(
dy

dx

)2

(∆x)2

=

√√√√(1 +

(
dy

dx

)2
)

(∆x)2

=
√

1 + f ′(x)2∆x
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Graphic: Pythagoren theorem used to approximate a
small length of the curve.

The arc length of the curve y = f(x) from x = a to
x = b is given by

lim
∆x→0

∑√
1 + f ′(x)2∆x =

∫ b

a

√
1 + f ′(x)2 dx.
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? §8.2 Examples 6-7 use the arc length formula for
parametric curves, but we will not cover those in this
course.



Calculus II
(M102)

A. Wheeler
(she/her)

Week 1

§6.1

§6.2

§7.1

§7.2

Week 2

§7.3

§7.4

AP(s)

Week 3

§8.1

§8.2

§7.6

AP(s)

3 Applications of integration
§8.1 Areas and volumes

§8.2 Applications to geometry

§7.6 Improper integrals
� Infinite bounds
� Singularities in the integrand

Application problem(s)
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Infinite bounds

There are two types of improper integrals:

1 Integrals where one or both of the bounds is infinity.

2 Integrals over intervals where the function f(x)
reaches infinity.



Calculus II
(M102)

A. Wheeler
(she/her)

Week 1

§6.1

§6.2

§7.1

§7.2

Week 2

§7.3

§7.4

AP(s)

Week 3

§8.1

§8.2

§7.6

AP(s)

Type 1: Infinite bounds

Example
Find the area under the curve f(x) = 1

x2
for x ≥ 1.

The area is given by the improper integral∫ ∞
1

1

x2
dx.

It doesn’t seem like such an area should be finite, since
we are considering a region with an infinite length.
However, we will show that the area is, in fact, finite.
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Soln: To evaluate, replace ∞ with a placeholder variable
b. Then

lim
b→∞

∫ b

1

1

x2
dx =

∫ ∞
1

1

x2
dx.

Graphic: Area representation of an improper integral
with infinite bounds.
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Evaluate the integral on the lefthand side and take the
limit as b→∞.

lim
b→∞

∫ b

1

1

x2
dx = lim

b→∞
−1

x

∣∣∣∣b
1

= lim
b→∞

(
−1

b
+ 1

)
= 1,

since limb→∞
1
b

= 0.



Calculus II
(M102)

A. Wheeler
(she/her)

Week 1

§6.1

§6.2

§7.1

§7.2

Week 2

§7.3

§7.4

AP(s)

Week 3

§8.1

§8.2

§7.6

AP(s)

We conclude the area under the curve is 1. Since we get
a finite number when we take the limit, the area is finite
and we say the integral

∫∞
1

1
x2
dx converges.

? For an example of an improper integral that diverges,
see §7.6 Examples 1 and 3.

If both bounds on an improper integral are infinity, we
choose any finite number c and write∫ ∞
−∞

f(x) dx = lim
a→−∞

∫ c

a

f(x) dx+ lim
b→∞

∫ b

c

f(x) dx.
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Singularities in the integrand

Type 2: Singularities in the integrand

Suppose we wish to evaluate
∫ b
a
f(x) dx but there is a

number c between a and b where limx→c f(x) = ±∞.
We say f “blows up”, or has a singularity at x = c.

Since we can write∫ b

a

f(x) dx =

∫ c

a

f(x) dx+

∫ b

c

f(x) dx,

we assume either c = a or c = b.
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Example
Find the area under the curve f(x) = 1√

x
between x = 0

and x = 1.

Soln: Since we can’t have a zero in the denominator, f
has a singularity at x = 0.

We use a placeholder variable a > 0, evaluate the
integral, and take the limit as a approaches 0 from the
right, since a > 0.
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lim
a→0+

∫ 1

a

1√
x
dx = lim

a→0+
2x

1
2

∣∣∣1
a

= lim
a→0+

2− 2a
1
2 = 2

Graphic: Area representation of an improper integral
with singularities in the integrand.
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3 Applications of integration
§8.1 Areas and volumes

§8.2 Applications to geometry

§7.6 Improper integrals

Application problem(s)
� (1) §8.2 #30 (Stewart)
� (2) §8.2 #40 (Lial, et al.)
� (3) §7.6 #50
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(1) §8.2 #30 (Stewart)

A group of engineers is building a parabolic satellite dish
whose shape will be formed by rotating the curve
y = ax2 about the y-axis. If the dish is to have a 10 ft
diameter and a maximum depth of 2 ft, find the value of
a and the surface area of the dish.

Soln: First graph the parabola. Since the height of the
dish must be 2 ft, we intersect the parabola with the line
y = 2.
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˜Desmos˜ has a slider feature we can use to approximate
the value of a. Since the dish is to have diameter 10 ft,
its radius should be 5. The value a = 0.1 gets us close to
intersecting y = ax2 and y = 2 at x = 5.

Graphic: y = ax2 intersected with y = 2, along with the
slider feature for a.
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Now we find a exactly using algebra. Since we want
y = x2 and y = 2 to intersect at x = 5, we set the two
equations equal to each other with 5 plugged in for x:

a(5)2 = 2 =⇒ a =
2

25
= 0.08
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To find the surface area, we divide the rotated parabola
into hollow cylinders and add up the surface area of each
cylinder.

Graphic: Parabolic dish divided into hollow cylinders.
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Each hollow cylinder has surface area

2π × (radius)× (thickness),

or the perimeter of a circle times the thickness.

The thickness of a hollow cylinder is ∆y. The radius of a
hollow cylinder is the x-coordinate, which we get by
solving y = ax2 for x; we get x =

√
y
a

.

(Even though we already solved for a, it’s good practice
to leave it as is until the end of the problem.)
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We get a Riemann sum and an integral

2π
∑√

y

a
∆y ≈ 2π√

a

∫ 2

0

√
y dy

=
2π√
a

2y
3
2

3

∣∣∣∣2
0

=
2π√

2
25

2(2)
3
2

3

≈ 41.9 ft2.
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(2) §8.2 #40 (Lial, et al.)

The flow of blood in an artery of the body is laminar (in
layers), with the velocity very low near the artery walls
and highest in the center of the artery. In this model of
blood flow, we calculate the total flow in the artery by
thinking of the flow as being made up of many layers of
concentric tubes sliding one on the other.
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Suppose R is the radius of the artery and r is the radius
of a given layer. Then the velocity of blood in that given
layer can be shown to be

v(r) = k(R2 − r2),

where k is a constant.

The total flow in the layer is defined to be the product of
the velocity and the cross-section area; the cross-section
area can be approximated by dA = 2πr dr ≈ 2πr∆r
(since A = πr2).
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Therefore, the total flow through one layer is

F (r) = 2πkr(R2 − r2)∆r.

Set up and evaluate a definite integral to find the total
flow in the artery.
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Q: What does the model look like?
Ans:

Graphic: Laminar model of blood flow through an artery.

Soln: The given foruma F (r) is for the blood flow
through one concentric tube. To find the total blood
flow, we add up the flow through all the concentric tubes.
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∑
F (r) =

∑
2πkr(R2−r2)∆r ≈ 2πk

∫ R

0

r(R2−r2) dr

To integrate, let w = R2 − r2. Then −1
2
dw = r dr.

The bounds become w(R) = R2 − (R)2 = 0 and
w(0) = R2 − (0)2 = R2.
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2πk

∫ R

0

r(R2 − r2) dr = �2πk

(
−1

�2

)∫ 0

R2

w dw

= −πkw
2

2

∣∣∣∣0
R2

= −πk
(
−(R2)2

2

)
=
πkR4

2
.
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(3) §7.6 #50

The probability that a light bulb manufactured by a
company lasts at least a hundred hours is∫ ∞

a

0.012e−0.012t dt.

The CEO claims that 90% of the company’s light bulbs
last at least 1000 hours. Is this statement accurate?
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Soln: To answer this question, we find the probability
that a light bulb lasts at least 1000 hours. This means
we use the given formula with a = 10 = 1000 hours
plugged in (pay attention to the units!).

Use the substitution w = −0.012t. Make sure to change
the bounds.
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∫ ∞
10

0.012e−0.012t dt =���0.012

∫ −∞
−0.12

ew

−���0.012
dw

= − lim
b→−∞

∫ b

−0.12

ew dw

= − lim
b→−∞

ew
∣∣∣∣b
−0.12

= − lim
b→−∞

(
�
�7

0
eb − e−0.12

)
= e−0.12 ≈ 0.887

This means only 88.7% of the light bulbs last at least
1000 hours. So the company’s CEO is lying!



Calculus II
(M102)

A. Wheeler
(she/her)

Week 4

§7.7

§9.1

§9.2

§9.3

APs

Week 5

§9.4

APs

Week 6

§9.5

§10.1

APs

Week 7

§10.2

§10.3

APs

Week 4 overview

4 Intro to infinite series
§7.7 Comparison of improper integrals

� Comparison of improper integrals
� Examples

§9.1 Sequences
� General terms
� Recursively defined sequences
� Convergence of sequences

§9.2 Geometric series
� Series
� Geometric series

§9.3 Convergence of series
� Sequence of partial sums
� The Divergence Test
� The Integral Test
� The p-series Test

Application problems
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Week 4 overview (cont.)

� (1) §9.1 #63
� (2)
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4 Intro to infinite series
§7.7 Comparison of improper integrals

� Comparison of improper integrals
� Examples

§9.1 Sequences

§9.2 Geometric series

§9.3 Convergence of series

Application problems
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Comparison of improper

integrals

Sometimes we can predict whether an improper integral
converges before computing it.

There are a few basic forms of integrals whose
converge/divergence we know. For other integrals we can
use algebraic manipulation to compare them to the basic
forms.

The idea is to look at the integrands. Suppose we want
to compare

∫ b
a
f(x) dx and

∫ b
a
g(x) dx (where one or

both of a, b may be infinity).
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Comparisons:

• If f(x) ≤ g(x) for a ≤ x ≤ b, then if
∫ b
a
g(x) dx

converges, so does
∫ b
a
f(x) dx.

This makes sense because
∫ b
a
g(x) dx is a finite

number and
∫ b
a
f(x) dx is a sum of quantities less

than that finite number.

• If f(x) ≥ g(x) for a ≤ x ≤ b, then if
∫ b
a
g(x) dx

diverges, then so does
∫ b
a
f(x) dx.

This is because we have a sum of quantities bigger
than a sum that goes to infinity.
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There are three basic integrals we compare with:

•
∫ ∞
a

1

xp
dx converges for p > 1, diverges for p ≤ 1.

•
∫ 1

0

1

xp
dx converges for p < 1, diverges for p ≥ 1.

•
∫ ∞

0

e−ax dx converges for all a > 0.
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Examples

Example (§7.7 #22)
Decide whether

∫∞
1

dθ√
θ2+1

converges.

Soln: Since θ2 is under a radical sign, we compare it to∫∞
1

dθ
θ

, which diverges.
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If we can show that 1√
θ2+1
≥ 1

θ
for θ ≥ 1, then it will

imply that
∫∞

1
dθ√
θ2+1

diverges, too. We have

θ2 + 1 ≤ θ2 + θ2 when θ ≥ 1

=⇒
√
θ2 + 1 ≤

√
2θ2

=
√

2θ because θ ≥ 1 > 0

=⇒ 1√
θ2 + 1

≥ 1√
2θ
.

This is almost what we want, except for the factor of 1√
2
.
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Q: Does
∫∞

1
dθ√
2θ

diverge?

Ans: Yes, since∫ ∞
1

dθ√
2θ

=
1√
2

∫ ∞
1

dθ

θ
=

1√
2
· ∞ =∞.

We conclude that
∫∞

1
dθ√
θ2+1

diverges.
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Example (§7.7 #28)
Determine the convergence of

∫ π
0

2−sinφ
φ2

dφ.

Soln: When 0 ≤ φ ≤ π, we have 0 ≤ sinφ ≤ 1. This
means 1 ≤ 2− sinφ. Thus

1

φ2
≤ 2− sinφ

φ2
.

The question now is whether
∫ π

0
dφ
φ2

diverges. If it does,

then so does
∫ π

0
2−sinφ
φ2

dφ.
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We have ∫ 1

0

dφ

φ2
≤
∫ π

0

dφ

φ2
,

because we are integrating over a larger area. Since
∫ 1

0
dφ
φ2

diverges, so does
∫ π

0
dφ
φ2

. Therefore, so does
∫ φ

0
2−sinφ
φ2

dφ.
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4 Intro to infinite series
§7.7 Comparison of improper integrals

§9.1 Sequences
� General terms
� Recursively defined sequences
� Convergence of sequences

§9.2 Geometric series

§9.3 Convergence of series

Application problems
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General terms

A sequence {sn} is a (usually infinite) list of numbers.

Example
{sn} = { 7︸︷︷︸

s1

, 10︸︷︷︸
s2

, 13︸︷︷︸
s3

, 16︸︷︷︸
s4

, 19︸︷︷︸
s5

, . . . }

The sequence doesn’t need to have a pattern, like the
example above does. In either case, we called sn the
general term.
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When the sequence does have a pattern, it is useful to
give it in terms of its general term.

Example
Find the general term for the sequence given in the
previous example.

Soln: The general term is sn = 7 + 3(n− 1). This is
because when n = 1 we have s1 = 7 + 3(1− 1) = 7,
when s = 2 we have s2 = 7 + 3(2− 1) = 10, when n = 3
we have s3 = 7 + 3(3− 1) = 13, etc.
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Example
Write out the first five terms of the sequence
s = {n+ (−1)n︸ ︷︷ ︸

sn

}.

Soln: Plug in values for n:

n = 1 =⇒ s1 = 1 + (−1)1 = 0

n = 2 =⇒ s2 = 2 + (−1)2 = 3

n = 3 =⇒ s3 = 3 + (−1)3 = 2

n = 4 =⇒ s4 = 4 + (−1)4 = 5

n = 5 =⇒ s5 = 5 + (−1)5 = 4

Therefore s = {0, 3, 2, 5, 4, . . . }.
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Recursively defined

sequences

The Fibonacci sequence

f = {1, 1, 2, 3, 5, 8, 13, 21, . . . }

satisfies

f1 = f2 = 1

f3 = f1 + f2

f4 = f2 + f3

...

fn = fn−2 + fn−1.
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Because each term of f depends on previous terms, the
Fibonacci sequence is an example of a recursively
defined sequence.

The recursion fn = fn−2 + fn−1 requires knowledge of
the previous two terms. This means to define the
sequence we need two initial values f1 = 1 and f2 = 1.

? Finding a closed form general term for a recursively
defined sequence, that is, a general term that doesn’t
depend on previous terms, can be very hard. For
example, with some work, it can be shown that the
closed form general term of the Fibonacci sequence is an
expression in terms of the Golden Ratio.
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Convergence of sequences

Knowing each term of a sequence requires “plugging in”
a value of n to get each term. We can think of a
sequence {sn} as a function y = s(n) that takes integers
as an input. We can even graph sequences.
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On the left the graph is a collection of dots, since the
only inputs are the integers. On the right, terms of the
sequence are plotted on a number line.

Graphic: The sequence {sn} =
{

1 + (−1)n

n

}
.

In both cases the terms of the sequence

{sn} =
{

1 + (−1)n

n

}
seem to be getting closer together.
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When we think of sn = s(n) as a function, we can take
its limit as n→∞, just as we did with functions in Calc
I.

If
lim
n→∞

sn = a number

then we say {sn} converges. Else, we say the sequence
diverges.
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A sequence is bounded means there are numbers K, M ,
such that for all values of n,

K ≤ sn ≤M.

A sequence is monotone means for large enough n (we
say n >> 0), either sn+1 ≤ sn for all n, or sn+1 ≥ sn for
all n.

In other words, a sequence is monotone means its terms
eventually get smaller and smaller or bigger and bigger
(or they stay the same).
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Theorem (Monotone Convergence Theorem)
A monotone, bounded sequence converges.

Example
The sequence

s =

{
1,

1

2
,
1

3
,
1

4
, . . .

}
=

{
1

n

}
converges because 0 ≤ 1

n
≤ 1 for all n (bounded) and

1
n+1
≤ 1

n
for all n (monotone).
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� Series
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Application problems
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Series

A series is an infinite sum of numbers

S = a1 + a2 + a3 + · · · =
∞∑
n=1

an.

Series don’t have to start at n = 1, they can start at any
integer n (same thing is true for sequences).

The numbers an are called the terms of the series. The
partial sums of the series are the numbers

Sn = a1 + · · ·+ an =
n∑
i=1

ai.
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Example (Zeno’s Dichotomy Paradox)
? For a more detailed description of this paradox, see the
Stanford Encyclopedia of Philosophy.

Suppose I want to walk across a room. To get from one
side to the other, I need to first walk halfway. Then I
need to walk half of the remaining distance. Then half of
that remaining distance. And so forth.

Given that I must complete an infinite number of tasks,
walking half of a distance each time, how is it that I can
make it to the other side of the room in finite time?

https://plato.stanford.edu/entries/paradox-zeno/#Dic
https://plato.stanford.edu/entries/paradox-zeno/#Dic
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Soln: The scenario can be modeled using the series

S =
1

2
+

1

4
+

1

8
+

1

16
+ · · · =

∞∑
n=1

1

2n
.

Each time I walk half of the remaining distance, I get
closer to 1, the full length of the room. Thus we expect
S to converge to 1.

A series S converges means the sequence of its partial
sums converges. That is, we want

lim
n→∞

Sn = lim
n→∞

n∑
i=1

1

2n
= 1.
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How do we write Sn = 1
2

+ · · ·+ 1
n

in such a way that we
can take the limit? In this example, there is a trick.
First, note that

1

2
Sn =

1

4
+

1

8
+

1

16
+ · · ·+ 1

2n︸ ︷︷ ︸
Sn− 1

2

+
1

2n+1
.

Therefore,

Sn −
1

2
Sn = Sn −

(
Sn −

1

2
+

1

2n+1

)
.

Now simplify and solve for Sn:
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Sn −
1

2
Sn =��Sn −

(
��Sn −

1

2
+

1

2n+1

)
(

1− 1

2

)
Sn =

1

2
− 1

2n+1

1

2
Sn =

1

2
− 1

2

(
1

2n

)
=⇒ Sn = �

�1
2
−
�
�1
2

(
1

2n

)
�
�1
2

= 1− 1

2n

Taking the limit, we get limn→∞
(
1− 1

2n

)
= 1, as

expected.
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Geometric series
The reason the trick for finding Sn in the previous
example worked is that S was an example of a geometric
series.

In general, a geometric series is a series of the form

S = a+ ar + ar2 + · · ·+ arn−1 + · · · =
∞∑
n=1

arn−1.

In the previous example, a = 1
2

and r = 1
2
. We also had

an =
1

2n
=

1

2︸︷︷︸
a

(
1

2

)n−1

︸ ︷︷ ︸
rn−1

, and

Sn =
1

2
+

1

2

(
1

2

)
+

1

2

(
1

2

)2

+ · · ·+ 1

2

(
1

2

)n−1

.
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Using a similar trick as in the previous example, we can
conclude that the partial sums of a a geometric series are

Sn = a+ ar + · · ·+ arn−1 =
a(1− rn)

1− r
.

(? The textbook actually derives this formula.)

The sum of the geometric series is the limit of its
sequence of partial sums, so we have

S = lim
n→∞

Sn = lim
n→∞

a(1− rn)

1− r
provided r 6= 1.

Q: Why do we need r 6= 1? What happens to the series
when r = 1?
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In order for the limit to exist, we need rn to converge.
This is because

lim
n→∞

a(1− rn)

1− r
=

a

1− r
lim
n→∞

(1− rn).

The only way this can happen is if r is a fraction, that is,
|r| < 1. Then rn → 0.
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The conclusion is that the geometric series

S = a+ ar + ar2 + · · ·+ arn−1 + · · ·

• converges to a
1−r when |r| < 1.

• diverges otherwise.

? See §9.2 Example 1 parts (b) and (c).
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4 Intro to infinite series
§7.7 Comparison of improper integrals

§9.1 Sequences

§9.2 Geometric series

§9.3 Convergence of series
� Sequence of partial sums
� The Divergence Test
� The Integral Test
� The p-series Test

Application problems
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Sequence of partial sums

When geometric series converge, we can compute exactly
what they converge to. For general series we cannot do
this, but we can predict whether a series converges or
not, using techniques similar to those in §7.7.

The most direct way to predict the convergence of a
series is to compute the limit of its partial sums. If the
limit exists, then in that case we know exactly what it
converges to.



Calculus II
(M102)

A. Wheeler
(she/her)

Week 4

§7.7

§9.1

§9.2

§9.3

APs

Week 5

§9.4

APs

Week 6

§9.5

§10.1

APs

Week 7

§10.2

§10.3

APs

Example (§9.3 #1)
Does S =

∑∞
n=1 n converge or diverge?

Soln: The partial sums are

Sn = 1 + 2 + · · ·+ n =
n(n+ 1)

2

(the above formula is explaind ˜here˜). We have

lim
n→∞

n(n+ 1)

2
=

1

2
∞ ·∞ =∞,

so the series diverges.

https://betterexplained.com/articles/techniques-for-adding-the-numbers-1-to-100/
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The Divergence Test

Theorem (The Divergence Test)
If limn→∞ an 6= 0 then the series S =

∑∞
n=1 an diverges.

• Note that we are taking the limit of the terms of the
series, and not of the partial sums.

• If the ans go to infinity, we are adding larger and
larger numbers together and cannot possibly get a
finite number.
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• On the other hand, if an → L, a number not equal
to 0, then

S =
∞∑
n=1

an ≈
∞∑
n=1

L = L+ L+ L+ · · · =∞.

The series in the previous example diverges, by the
Divergence Test, since limn→∞ n =∞. That is, the
terms grow without bound and so the sum of them must
be infinite.
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The Integral Test

Recall, the terms an of a series can be thought of as a
function f(n), where the inputs are integers.

If we can make the inputs all real numbers, then we have
a function f(x). (Convention says that an x represents
the input of a real number, while an n represents the
input of an integer.)
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Theorem (The Integral Test)
Suppose an = f(n), where f(x) is positive and
decreasing. Then the series

∑∞
n=1 an converges if and

only if the integral
∫∞

1
f(x) dx converges.

The idea is that we can write a Riemann sum of the
integral whose terms are the same as those of the series.
Then we can compare the area given by the Riemann
sum to the area under the curve f(x).
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Example (The Harmonic Series)
Determine the convergence of S =

∑∞
n=1

1
n

.

Soln: We use the Divergence Test first.

lim
n→∞

an = lim
n→∞

1

n
= 0.

Unfortunately, the Divergence Test does not let us
conclude that the harmonic series converges.
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On the other hand, we can use the Integral Test since
f(x) = 1

x
is positive and decreasing. Here is why it

works:

Graphic: Comparing the harmonic series to
∫∞

1
1
x
dx.
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The rectangles have thickness ∆x = 1 so their area is
just the function evaluated at the endpoints n. The
Riemann sum is an overestimate. We have

∞∑
n=1

1

n︸ ︷︷ ︸
Riemann sum

>

∫ ∞
1

1

x
dx

= lim
b→∞

∫ b

1

1

x
dx

= lim
b→∞

ln b =∞.

Therefore,
∑∞

n=1
1
n

diverges.

? See §9.3 Example 4 for a series that converges by
comparing to an integral.
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The p-series Test

Theorem (p-series Test)
The p-series

∑∞
n=1

1
np

converges if p > 1 and diverges
otherwise.

Compare to the useful integrals slide.

The p-series Test can be proven using the Integral Test.
? See §9.3 Example 5.
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4 Intro to infinite series
§7.7 Comparison of improper integrals

§9.1 Sequences

§9.2 Geometric series

§9.3 Convergence of series

Application problems
� (1) §9.1 #63
� (2)
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(1) §9.1 #63

The Fibonacci sequence, first studied by the
thirteenth-century Italian mathematician Leonardo di
Pisa, also known as Fibonacci, is defined recursively by

Fn = Fn−1 + Fn−2 for n > 2 and F1 = F2 = 1.

The Fibonacci sequence occurs in many branches of
mathematics and can be found in patterns of plant
growth (phyllotaxis).

? See ˜this article˜ for more about Fibonacci in nature
and ˜this article˜ for more about the Fibonacci sequence!

https://www.mathsisfun.com/numbers/nature-golden-ratio-fibonacci.html
https://www.mathsisfun.com/numbers/fibonacci-sequence.html
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(a) Find the first 12 terms.

Soln: 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, ...

(b) Show that the sequence of successive ratios Fn+1

Fn
appears to be a number Φ satisfying the equation
Φ2 = Φ + 1. (The number Φ was known as the
golden ratio to the ancient Greeks.)
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Soln: We use a calculator to compute the first several

terms of the sequence s =
{
Fn+1
Fn

}
.

s1 =
F2

F1

=
1

1
= 1

s2 =
F3

F2

=
2

1
= 2

s3 =
F4

F3

=
3

2
= 1.5

s4 =
F5

F4

=
5

3
≈ 1.66666666667

s5 =
F6

F5

=
8

5
= 1.6

s6 =
F7

F6

=
13

8
= 1.625
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s8 =
F9

F8

=
21

13
≈ 1.61538461538

s9 =
F10

F9

=
34

21
≈ 1.61904761905

s10 =
F11

F10

=
55

34
≈ 1.61764705882

s11 =
F12

F11

=
89

55
≈ 1.61818181818

s12 =
F13

F12

=
144

89
≈ 1.61797752809

s13 =
F14

F13

=
233

144
≈ 1.61805555556

s14 =
F15

F14

=
377

233
≈ 1.61802575107
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... The ratios appear to be approaching an number close
to 1.618. Now we check:

(1.618)2 = 2.167924

(1.618) + 1 = 2.168

? Φ is actually equal to 1+
√

5
2

= 1.6180339887....
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(? Bonus slide!) Check:

Φ2 − Φ− 1 =

(
1 +
√

5

2

)2

−

(
1 +
√

5

2

)
− 1

=
1 + 2

√
5 + 5

4
− 2(1 +

√
5)

4
− 4

4

=
1 +��

�2
√

5 + 5− 2��
��−2
√

5− 4

4

=
1 + 5− 2− 4

4
= 0
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(? Bonus bonus slide!)
Q: Where does the equation Φ2 − Φ− 1 = 0 (or
Φ2 = Φ + 1) come from?

Ans: Start with the recursion formula to derive the
formula for the ratios, then take the limit:

Fn+1 = Fn + Fn−1

Fn+1

Fn
=
Fn
Fn

+
Fn−1

Fn

(
1

Fn−1

1
Fn−1

)

=⇒ lim
n→∞

Fn+1

Fn
= lim

n→∞

(
1 +

1
Fn
Fn−1

)
= Φ = 1 +

1

Φ
=⇒ Φ2 = Φ + 1
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(2)

The Riemann-zeta function ζ is defined by

ζ(x) =
∞∑
n=1

1

nx

and is used in number theory to study the distribution of
prime numbers. (You can read a little history about it at
˜this˜ website.)

https://www.britannica.com/science/Riemann-zeta-function
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(a) (§11.4 #34, Stewart) Leonhard Euler was able to
calculate the exact sum of the p-series with p = 2:

ζ(2) =
∞∑
n=1

1

n2
=
π2

6

Use this fact to find the sum of the series

1.
∞∑
n=2

1

n2

2.
∞∑
n=3

1

(n + 1)2

3.
∞∑
n=1

1

(2n)2
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Soln:

1. We have

∞∑
n=2

1

n2
=

(
∞∑
n=1

1

n2

)
− 1

12

=
π2

6
− 1.

2. Change the indices in the summation. Note that

∞∑
n=3

1

(n+ 1)2
=

1

42
+

1

52
+

1

62
+ · · · and

∞∑
n=4

1

n2
=

1

42
+

1

52
+

1

62
+ · · · .
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And,

∞∑
n=4

1

n2
=
∞∑
n=1

1

n2
− 1

1
− 1

22
− 1

32
=
π2

6
− 49

36
.

3.
∞∑
n=1

1

(2n)2
=

1

4

∞∑
n=1

1

n2
=
π2

24
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(b) (§11.4 #35, Stewart) Euler also found the sum of
the p-series with p = 4:

ζ(4) =
∞∑
n=1

1

n4
=
π4

90

Use Euler’s result to find the sum of the series

1.
∞∑
n=1

(
3

n

)4

.

2.
∞∑
k=5

1

(k − 2)4
.
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Soln:

1.
∞∑
n=1

(
3

n

)4

= 34

∞∑
n=1

1

n4
=

81π4

90
=

9π4

10

2. Again, we change indices. Let n = k − 2. Then
n(5) = 5− 2 = 3 and we have

∞∑
k=5

1

(k − 2)4
=
∞∑
n=3

1

n4

=
∞∑
n=1

1

n4
− 1

14
− 1

24
=
π4

90
− 17

16
.
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Week 5 overview

5 Convergence tests for series
§9.4 Tests for convergence

� The Comparison Test
� The Limit Comparison Test
� The Ratio Test
� The Alternating Series Test
� Guidelines for choosing convergence tests
� More examples

Application problems
� (§11.6 #50, Stewart)
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5 Convergence tests for series
§9.4 Tests for convergence

� The Comparison Test
� The Limit Comparison Test
� The Ratio Test
� The Alternating Series Test
� Guidelines for choosing convergence tests
� More examples

Application problems
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The Comparison Test

Just as we did with improper integrals, we can compare
the terms of two series to determine convergence.

Theorem (The Comparison Test)
Given series

∑∞
n=1 an and

∑∞
n=1 bn, suppose 0 ≤ an ≤ bn

for all n >> 0.

• If
∑∞

n=1 bn converges, then so does
∑∞

n=1 an.

• If
∑∞

n=1 an diverges, then so does
∑∞

n=1 bn.
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When considering a series
∑∞

n=1 an, we can look at
another series

∑∞
n=1 bn whose convergence we know, and

use algebra to compare the terms.

Example (§9.4 #14)
Determine whether the series

∑∞
n=1

2n+1
n2n−1

converges.

Soln: When n is really large, the 2ns nearly cancel each
other out and what’s left is a factor of n in the
denominator (the 1s become negligible for large enough
n).

Thus we compare to
∑∞

n=1
1
n

, which diverges.
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We need to show 2n+1
n2n−1

> 1
n

for n >> 0.

The 2ns almost cancel out so we write

1

n
=

2n + 1

n(2n + 1)
,

so that they do. Now we compare the denominator
n(2n + 1) to the denominator n2n − 1. We have

n(2n + 1) = n2n + n > n2n − 1.
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We conclude

2n + 1

n2n − 1
>

2n + 1

n(2n + 1)
=

1

n
.

Therefore,
∑∞

n=1
2n+1
n2n−1

diverges.
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The Limit Comparison Test

As seen in the previous example, sometimes the algebra
can be cumbersome or require ingenuity. But if we can
find series

∑∞
n=1 bn that “behaves” like

∑∞
n=1 an, then

there is a shortcut to determining convergence.

Theorem (The Limit Comparison Test)
Suppose an > 0 and bn > 0 for all n. If

lim
n→∞

an
bn

= c > 0 and c 6= ±∞

then
∑∞

n=1 an and
∑∞

n=1 bn either both converge or both
diverge.
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• In the limit, we can also take bn
an

and get the same
conclusion.

Example
Determine whether the series

∑∞
n=1

2n+1
n2n−1

converges.

Soln: As we saw before, the harmonic series
∑∞

n=1
1
n

“behaves” like our series
∑∞

n=1
2n+1
n2n−1

.
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lim
n→∞

2n+1
n2n−1

1
n

= lim
n→∞

n(2n + 1)

n2n − 1

= lim
n→∞

�n(2n + 1)

�n(2n − 1
n
)

= lim
n→∞

2n + 1

2n −
�
���
0

1
n

= lim
n→∞

��2n

��2n
+ lim

n→∞ �
�
���
0

1

2n

= 1.

Since we saw the harmonic series diverges, so must∑∞
n=1

2n+1
n2n−1

.
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Example (§9.4 #28)
Determine the convergence of

∑∞
n=1

2n

3n−1
.

Soln: When n >> 0, the 1 in the denominator becomes
negligible and the series behaves like the geometric series

∞∑
n=1

2n

3n
=
∞∑
n=1

(
2

3

)n
(where in the geometric series, a = r = 2

3
). The

geometric series converges, since
∣∣2

3

∣∣ < 1.
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Use the Limit Comparison Test:

lim
n→∞

2n

3n−1
2n

3n

= lim
n→∞

3n��2n

��2n(3n − 1)

= lim
n→∞

3n

3n − 1

= lim
n→∞

��3n

��3n

(
1−
�
��7

0
1

3n

)
= 1 > 0.

Therefore,
∑∞

n=1
2n

3n−1
converges.
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The Ratio Test

A geometric series
∑∞

n=1 ar
n−1 has the property that for

all n,
arn

arn−1
=
�ar�n

�a��
�rn−1

= r.

If the absolute value of that ratio between successive
terms is less than 1, then the series converges.

Some series behave like geometric series when n >> 0,
that is, if the (absolute value of the) ratio between
successive terms approaches a number less than 1, then
the series also converges.



Calculus II
(M102)

A. Wheeler
(she/her)

Week 4

§7.7

§9.1

§9.2

§9.3

APs

Week 5

§9.4

APs

Week 6

§9.5

§10.1

APs

Week 7

§10.2

§10.3

APs

Theorem (The Ratio Test)
Suppose limn→∞

|an+1|
|an| = L.

• If L < 1, then the series
∑∞

n=1 an converges.

• If L > 1, then the series diverges.

• If L = 1, then the test fails to give any information
about the series.

? §9.4 Example 7 gives two examples where L = 1; one
series diverges while the other converges.
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The Ratio Test is useful for series where factorials
appear, or where n appears in the exponent.

A ˜factorial˜ n! is the product of all integers less than
or equal to n:

n! = n · (n− 1) · (n− 2) · · · 2 · 1.

Factorials grow fast. They also cancel nicely. For
example,

10!

8!
=

10 · 9 · �8 · �7 · �6 · �5 · �4 · �3 · �2 · �1
�8 · �7 · �6 · �5 · �4 · �3 · �2 · �1

= 10 · 9 = 90.

https://www.mathsisfun.com/numbers/factorial.html
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Example (§9.4 #18)
Determine whether the series

∑∞
n=1

(n!)2

(2n)!
converges.

Soln: Use the Ratio Test; make sure in the numerator to
plug n+ 1 in for n exactly:

lim
n→∞

∣∣∣ ((n+1)!)2

(2(n+1))!

∣∣∣∣∣∣ (n!)2

(2n)!

∣∣∣ = lim
n→∞

(2n)!((n+ 1)!)2

(n!)2(2(n+ 1))!

The absolute values go away, since everything is positive.
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To begin cancelling, we use the facts that:

(n+ 1)! = (n+ 1)n! and

((2(n+ 1))! = (2n+ 2)! = (2n+ 2)(2n+ 1)(2n)!

Replacing (n+ 1)! and (2(n+ 1))!, we have

lim
n→∞

(2n)!((n+ 1)!)2

(n!)2(2(n+ 1))!
= lim

n→∞
�
��(2n)!((n+ 1)n!)2

(n!)2(2n+ 2)(2n+ 1)��
�(2n)!

= lim
n→∞

(n+ 1)2
��
�(n!)2

��
�(n!)2(2n+ 2)(2n+ 1)

= lim
n→∞

n2 + 2n+ 1

4n2 + 6n+ 2
.
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Now we evaluate the limit as in Calc I. The highest
exponent that appears in the denominator is 2, so
multiply top and bottom by 1

n2 .

lim
n→∞

n2 + 2n+ 1

4n2 + 6n+ 2

( 1
n2

1
n2

)
= lim

n→∞

1 +
�
���
0

2
n

+
�
��7

0
1
n2

4 +
�
���
0

6
n

+
�
��7

0
2
n2

=
1

4
< 1,

so we conclude the series
∑∞

n=1
(n!)2

(2n)!
converges.
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The Alternating Series Test

A series whose terms alternate between positive and
negative is called an alternating series.

In its summation form, a factor of (−1)n or (−1)n±1

usually appears. Or we might see cosnπ, since it also
alternates between ±1.

Example∑∞
n=2

(−1)n

n lnn
is an alternating series, since

∞∑
n=2

(−1)n

n lnn
=

1

2 ln 2
− 1

3 ln 3
+

1

4 ln 4
−· · ·+ (−1)n

n lnn
+ · · · .

(Recall, the indexing doesn’t have to start at n = 1.)



Calculus II
(M102)

A. Wheeler
(she/her)

Week 4

§7.7

§9.1

§9.2

§9.3

APs

Week 5

§9.4

APs

Week 6

§9.5

§10.1

APs

Week 7

§10.2

§10.3

APs

Theorem (The Alternating Series Test)
An alternating series of the form

a1 − a2 + a3− · · · (−1)n±1an + · · · or

−a1 + a2 − a3+ · · · (−1)nan + · · ·

converges if

• limn→∞ an = 0 and

• 0 < an+1 < an for n >> 0.
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In words, if the ans get small enough fast enough then
we are adding, then subtracting, a smaller and smaller
amount. It makes sense then that the series converges
under these conditions.

Also observe that the first condition in the Alternating
Series Test is the same as the one in the Divergence
Test. Always check it first, to save time.

If one or both conditions fail then the series may or may
not converge.

? ˜StackExchange has a forum˜ with examples of
convergent series for which the Alternating Series Test
fails.

https://math.stackexchange.com/questions/836801/is-there-a-convergent-alternating-series-that-fails-the-ast
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A series
∑∞

n=1 an is

• conditionally convergent means it converges but∑∞
n=1 |an| does not.

• absolutely convergent means both
∑∞

n=1 an and∑∞
n=1 |an| converge.

? The ˜Riemann series theorem˜ says any conditionally
convergent series can converge to any number,
depending on how the terms are ordered.

Theorem
If
∑∞

n=1 |an| converges, then so does
∑∞

n=1 an.

https://mathworld.wolfram.com/RiemannSeriesTheorem.html
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Guidelines for choosing

convergence tests

(1) Do the Divergence Test first. Even if it fails, it is
the quickest to do.

(2) If it’s an alternating series use the Alternating Series
Test.

(3) Is it a geometric or a p-series? We know the
convergence properties of those types of series.

(4) Does it behave like a geometric or p-series? Use the
Comparison Test if the algebraic manipulations are
straightforward, otherwise use the Limit Comparison
Test.



Calculus II
(M102)

A. Wheeler
(she/her)

Week 4

§7.7

§9.1

§9.2

§9.3

APs

Week 5

§9.4

APs

Week 6

§9.5

§10.1

APs

Week 7

§10.2

§10.3

APs

(5) If it has a factorial or n in the exponent, use the
Ratio Test.

Never use the Ratio Test with a rational function or
an algebraic function (an algebraic function is one
that looks like a rational function, but where radical
signs may appear). Comparison and Limit
Comparison are better for those types of series.

(6) If sine or cosine appears, check for absolute
convergence. Unless there is a cosnπ, in which case
the series is actually an alternating series.

(7) Check if the Integral Test works.
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More examples

Example (§9.4 #72)
Determine the convergence of

∑∞
n=1

n2

n2+1
.

Soln: When n >> 0, an ≈ n2

n2 = 1. We compare to the
series

∑∞
n=1 1, which diverges. Unfortunately,

n2

n2 + 1
<
n2

n2
= 1 for all n.

We want n2

n2+1
> 1 in order to conclude divergence!
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To avoid this problem, we use the Limit Comparison Test:

lim
n→∞

n2

n2+1

1
= lim

n→∞

n2

n2 + 1

( 1
n2

1
n2

)
= lim

n→∞

1

1 +
�
��7

0
1
n2

= 1,

therefore
∑∞

n=1
n2

n2+1
diverges.

On the other hand, the Divergence Test shows right
away that the series diverges.
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Example (§9.4 #73)
Determine the convergence of

∑∞
n=1

1+3n

4n
.

Soln: When n >> 0, the 1 in the numerator becomes
neglible and the terms approach 3n

4n
. We can verify this

using the Ratio Test.

lim
n→∞

∣∣∣1+3n+1

4��n+1

∣∣∣∣∣1+3n

��4n
∣∣ = lim

n→∞

1 + 3n+1

4(1 + 3n)

( 1
3n

1
3n

)

= lim
n→∞

�
��7

0
1

3n
+ 3

4

(
�
��7

0
1

3n
+ 1

) =
3

4
< 1

Therefore, the series converges.
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Example (§9.4 #77)
Determine the convergence of

∑∞
n=0 e

−n.

Soln: The Divergence Test fails since

lim
n→∞

e−n = lim
n→∞ �

�
���
0

1

en
= 0.

However,
∑∞

n=0
1
en

=
∑∞

n=0

(
1
e

)n
is a geometric series

with a = 1 and r = 1
e
. Since e ≈ 2.7, 1

e
< 1. Using the

formula for geometric series, we have that the series
converges to

∞∑
n=0

e−n =
1

1− 1
e

≈ 1.582.
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Example (§9.4 #89)
Determine the convergence of

∑∞
n=1

sinn
n2 .

Soln: The terms of the series change between positive
and negative, but the series is not alternating. We check
for absolute convergence. Since sinn is between −1 and
1, | sinn| ≤ 1. Therefore

| sinn|
|n2|

≤ 1

n2
.

Thus the absolute series converges, because the p-series∑∞
n=1

1
n2 does. We conclude

∑∞
n=1

sinn
n2 converges.
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5 Convergence tests for series
§9.4 Tests for convergence

Application problems
� (§11.6 #50, Stewart)
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(§11.6 #50, Stewart)

Around 1910, Srinivasa Ramanujan discovered the
formula

1

π
=

2
√

2

9801

∞∑
n=0

(4n)!(1103 + 26390n)

(n!)43964n
.

William Gosper used this series in 1985 to compute the
first 17 million digits of π.

(a) Verify that this series is convergent.

(b) How many correct decimal places of π do you get if
you use just the first term of the series? What if you
use two terms?
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Soln:

(a) The constant in front of the summation does not
affect convergence, so we ignore it. Since factorials
appear in the series, we use the Ratio Test.

lim
n→∞

∣∣∣ (4(n+1))!(1103+26390(n+1))

((n+1)!)43964(n+1)

∣∣∣∣∣∣ (4n)!(1103+26390n)
(n!)43964n

∣∣∣
= lim

n→∞

(n!)43964n(4(n+ 1))!(1103 + 26390(n+ 1))

((n+ 1)!)43964(n+1)(4n)!(1103 + 26390n)
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A lot of cancelling happens.

• (n!)4

((n + 1)!)4
=

(
n!

(n + 1)!

)4

=
1

(n + 1)4

• 3964n

3964(n+1)
=

1

3964

• (4(n + 1))!

(4n)!
= (4n + 4)(4n + 3)(4n + 2)(4n + 1)

Simplifying (1103 + 26390(n+ 1)), the limit
becomes
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lim
n→∞

(4n+4)(4n+3)(4n+2)(4n+1)(27493+26390n)
(n+1)43964(1103+26390n)

.

To find the limit, notice that both the numerator
and the denominator are degree 5 in n. So we take
the ratio of the coefficients.

The ratio of the coefficients of n5 is

44 ·����26390

3964 ·����26390
< 1,

so by the Ratio Test, the series converges!
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(b) Compare the reciprocal of the first term of the series
to π:

9801

2
√

2

(0!)43944(0)

(4(0))!(1103 + 26390(0))
≈ 3.14159273001

π ≈ 3.14159265359

The reciprocal of the second partial sum (one can
use ˜Desmos˜ to compute) is:

1
2
√

2
9801

∑1
n=0

(4n)!(1102+26390n)
(n!)43964n

≈ 3.14159265359

https://www.desmos.com/calculator
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Week 6 overview

6 Power series & intro to Taylor series
§9.5 Power series and interval of convergence

� Power series
� Radius of convergence
� Interval of convergence
� Indexing even and odd terms
� Announcements

§10.1 Taylor polynomials
� Recall: linear approximations
� Tangent parabolas and higher degree curves
� Accuracy of Taylor polynomials

Application problems
� (§10.1 #48)
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6 Power series & intro to Taylor series
§9.5 Power series and interval of convergence

� Power series
� Radius of convergence
� Interval of convergence
� Indexing even and odd terms
� Announcements

§10.1 Taylor polynomials

Application problems
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Power series

A power series about a is a series of the form

C0 + C1(x− a) + C2(x− a)2 + · · · =
∞∑
n=0

Cn(x− a)n,

where the Cns are constants and a is a fixed number.

Example (§9.5 #1-4)
Which ones are power series?

(1) x− x3 + x6 − x10 + x15 − · · ·
(2) 1

x
+ 1

x2
+ 1

x3
+ 1

x4
+ · · ·

(3) 1 + x+ (x− 1)2 + (x− 2)3 + (x− 3)4 + · · ·
(4) x7 + x+ 2
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Soln:

(1) Is a power series about 0, where C0 = 0, C2 = 0,
C4 = C5 = 0, etc.

(2) Not a power series because x appears in the
denominator.

(3) Not a power series because it is impossible to
determine a.

(4) Is a power series about 0 with C0 = 2, C1 = 1,
C7 = 1, and all other Cns equal to 0.
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Radius of convergence

Power series always converge when x = a; they converge
to C0.

Power series don’t always converge for all x.

• If a power series does converge for all x, we say its
radius of convergence is ∞.

• If it converges at x = a and diverges at all other
values of x, we say its radius of convergence is 0.
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To find the values of x where a power series converges,
we use the Ratio Test.

lim
n→∞

|Cn+1(x− a)n+1|
|Cn(x− a)n|

= lim
n→∞

|Cn+1|
|Cn|

|x− a|

= |x− a| lim
n→∞

|Cn+1|
|Cn|

.

For convergence, we want this limit to be less than 1, as
per the Ratio Test. We consider the factor limn→∞

Cn+1

Cn
.
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• If limn→∞
|Cn+1|
|Cn| does not exist, then there is no

possible way multiplying by |x− a| will give a
number less than 1, for any value of x 6= a.

In this case the radius of convergence is 0.

• If limn→∞
|Cn+1|
|Cn| = 0, then for any value of x,

|x− a| · 0 = 0 < 1, and so the power series
converges.

Thus the radius of convergence is ∞.
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• If limn→∞
|Cn+1|
|Cn| exists and equals a positive number

K, then we want

|x− a| lim
n→∞

|Cn+1|
|Cn|

=|x− a|K < 1

=⇒ |x− a| < 1

K
.

The number R = 1
K

is the radius of convergence
for the power series

∑∞
n=0 Cn(x− a)n.

All values of x within a distance R of a give
convergence for the power series; values of x greater
than that distance give divergence.
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Example (§9.5 #12)
Find the radius of convergence of

∑∞
n=0(5x)n.

Soln: The power series is

∞∑
n=0

(5x)n = 1 + 5x+ 25x2 + 125x3 + 625x4 + · · · ,

so Cn = 5n.

lim
n→∞

|Cn+1|
|Cn|

= lim
n→∞

5n+1

5n
= 5← K.

So the radius of convergence is 1
K

= 1
5
.
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Interval of convergence

Graphic: Radius of convergence, R, determines an
interval centered at x = a, where the series converges.

Recall, the Ratio Test is inconclusive when the limit
equals 1. In the context of power series, this means we
have

|x− a|K = 1 =⇒ |x− a| = 1

K
= R.

In other words, we cannot determine convergence when
x = a±R.
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The interval of convergence for a power series∑∞
n=0 Cn(x− a)n is the interval between a−R and

a+R, including any endpoint where the series converges.

To determine the interval of convergence we first find the
radius of convergence, then check the endpoints by hand,
using techniques from §9.3-9.4.
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Example (§9.5 #27)
Find the interval of convergence for

∑∞
n=0

xn

3n
.

Soln: The power series is centered about a = 0 and the
coefficients are Cn = 1

3n
. First find the radius of

convergence.

lim
n→∞

|Cn+1|
|Cn|

= lim
n→∞

1
3n+1

1
3n

= lim
n→∞

3n

3n+1
=

1

3

The radius of convergence is 1
1
3

= 3.
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The interval of convergence contains the interval
(0− 3, 0 + 3) = (−3, 3) and may or may not include the
endpoints ±3.

We must check convergence for each individual endpoint
by plugging in x = ±3.
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x = −3:

Does the series
∑∞

n=0
(−3)n

3n
converge? We have

∞∑
n=0

(−3)n

3n
=
∞∑
n=0

(−1)n3n

3n
=
∞∑
n=0

(−1)n.

By the Divergence Test, this series diverges, and so
x = −3 is not included in the interval of convergence.
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x = 3:

Does the series
∑∞

n=0
3n

3n
converge? No, because the

series simplifies to
∑∞

n=0 1, which again diverges by the
Divergence Test. So x = 3 is not included in the inverval
of convergence.

We conclude that the interval of convergence for∑∞
n=0

xn

3n
is (−3, 3).
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Indexing even and odd terms

Example (§9.5 #23)
Find the radius of convergence for the series
x− x3

3
+ x5

5
− x7

7
+ · · · .

Soln: To write the series in closed form (and thus find
the general term), use 2n+ 1 to skip the even powers of
x. Use a (−1)n to get the alternating signs.

x− x3

3
+
x5

5
− x7

7
+ · · · =

∞∑
n=0

(−1)nx2n+1

2n+ 1

? Check this by plugging in n = 0, 1, . . . .
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Now use the Ratio Test:

lim
n→∞

∣∣∣����(−1)(n+1)x2(n+1)+1

2(n+1)+1

∣∣∣∣∣∣���(−1)nx2n+1

2n+1

∣∣∣ = lim
n→∞

∣∣∣∣ (2n+ 1)x2(n+1)+1

(2(n+ 1) + 1)x2n+1

∣∣∣∣
= lim

n→∞

∣∣∣∣(2n+ 1)x2n+3

(2n+ 3)x2n+1

∣∣∣∣
= |x2| lim

n→∞

∣∣∣∣2n+ 1

2n+ 3

∣∣∣∣
= |x2| < 1 =⇒ |x| < 1.

Therefore, the radius of convergence is 1.
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Announcements
Wednesday 24 February, 2021

• No Week 7 homework (ignore what the Course
calendar says).

• Due: Week 5 homework (1159p EST), Week 6
homework (Wed 3 Mar)
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6 Power series & intro to Taylor series
§9.5 Power series and interval of convergence

§10.1 Taylor polynomials
� Recall: linear approximations
� Tangent parabolas and higher degree curves
� Accuracy of Taylor polynomials

Application problems
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Recall: linear approximations

From Calc I, we saw that the tangent line to a smooth
curve f(x) at a point x = a has the equation

y − f(a) = f ′(a)(x− a),

since it has slope f ′(a) and contains the point (a, f(a)).
We can rewrite this as

y = f(a) + f ′(a)(x− a).
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For x-values “near” a, the curve f(x) is pretty close to
the tangent line. Thus we have the linear
approximation

f(x) ≈ f(a) + f ′(a)(x− a).

Graphic: Tangent line approximation to f(x) for x near
a.
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Unfortunately, as we can see from the picture on the
previous slide, the tangent line isn’t a good enough
approximation when x gets far away from a.

The idea behind Taylor polynomials is to “bend” the
tangent line so that it fits along the contours of f(x).
This makes an approximation that works for x-values
farther away from a.
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Tangent parabolas and

higher degree curves

Here are the criteria we want for a tangent parabola to a
smooth curve f(x) at x = a.

(1) The parabola should pass through the point
(a, f(a)).

(2) The slope should be the same as f ′(a) at x = a.

(3) The concavity of the parabola at x = a should
match the concavity of f(x).
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Parabolas (centered at the origin) have the form
y = C0 + C1x+ C2x

2 for constants C0, C1, C2.

To meet criterion (1), the y-intercept should be
C0 = f(a) and we shift the vertex of the parabola to
x = a by replacing x with x− a.

The tangent parabola should have the form

y = f(a) + C1(x− a) + C2(x− a)2.

Now we use criteria (2) and (3) to find C1 and C2.
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To meet criterion (2), take the derivative of the parabola,
plug in x = a, and set the result equal to f ′(a).

dy

dx
= C1 + 2C2(x− a)

=⇒ dy

dx

∣∣∣∣
x=a

= C1 = f ′(a)

This means the tangent parabola has the form

y = f(a) + f ′(a)(x− a) + C2(x− a)2.

It makes sense that the equation contains the linear
approximation.



Calculus II
(M102)

A. Wheeler
(she/her)

Week 4

§7.7

§9.1

§9.2

§9.3

APs

Week 5

§9.4

APs

Week 6

§9.5

§10.1

APs

Week 7

§10.2

§10.3

APs

Now we apply criterion (3) to find C2. The concavities of
f(x) and the parabola must match at x = a, so we want
the second derivative of the parabola to be f ′′(a) at
x = a.

We take the second derivative, plug in x = a, and set the
result equal to f ′′(a) in order to solve for C2.

d2y

dx2
= 2C2 =⇒ d2y

dx2

∣∣∣∣
x=a

= 2C2 = f ′′(a)

=⇒ C2 = f ′′(a)
2

.
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The tangent parabola is

y = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2.

Q: A tangent cubic should give a better approximtion of
f(x), for even more values of x farther away from a.
What do you think the equation for a tangent cubic will
look like?

Ans: We can derive the equation by applying the same
criteria for the tangent parabola, plus the requirement
that the third derivatives at x = a are equal.
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In general, the Taylor polynomial of degree n
approximating f(x) for x near a is given by

Pn(x) = f(a) + f ′(a)(x− a)

+
f ′′(a)

2
(x− a)2 +

f ′′′(a)

3 · 2
(x− a)3

+
f ′′′′(a)

4 · 3 · 2
(x− a)4 + · · ·+ f (n)(a)

n!
(x− a)n.

The linear approximation is P1(x), the tangent parabola
is P2(x), and the tangent cubic is P3(x).
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Terms of a Taylor polynomial shrink fast! Also, the
Taylor approximations get really good, really fast. It’s
what your calculators and computers use to compute
functions like ex, cosx, and sinx.

? Try it! Graph the first several Taylor polynomials of
f(x) = sin x for x near 0.
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Accuracy of Taylor

polynomials

Example (§10.1 #12)
Find the Taylor polynomial of degree n = 4 for
f(x) = ex near a = 1.

Soln: We have a formula, so we compute the derivatives
at 1. All derivatives of ex are equal to ex and e1 = e.
Therefore the Taylor polynomial is

P4(x) = e+e(x−1)+
e

2
(x−1)2 +

e

3!
(x−1)3 +

e

4!
(x−1)4.
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P4(x) is the tangent quartic to ex at x = 1. We can
visualize this, along with the lower degree
approximations, using ˜Desmos˜.

Graphic: P4(x) and lower degree Taylor approximations
to f(x) = ex for x near 1.

https://www.desmos.com/calculator
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Using the template from the previous slide, we can
investigate he higher degree Taylor approximations to
f(x) = ex near x = 1.

Graphic: Higher degree Taylor aprpoximations for ex.
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Notice how as n gets bigger, the Taylor polynomial
Pn(x) gets closer to the curve f(x) = ex for x-values
farther and farther away from 1. This example would
lead one to believe that

lim
n→∞

Pn(x) = f(x).

In other words, if we make an infinite Taylor polynomial
for f(x), i.e., a Taylor series, then it will exactly equal
f(x).
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Unfortunately, it’s too good to be true!

? However, in §10.2 we will use the fact that Taylor series
are power series to find their intervals of convergence.

Example (§10.1 #8)
Find the degree 3 and 4 Taylor polynomials for
f(x) = tan x, about the point x = 0.

We will again use ˜Desmos˜ to look at the higher degree
Taylor polynomials.

https://www.desmos.com/calculator
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When trying to determine whether tanx equals its Taylor
series we come across a red flag. Recall, the graph of
tanx:

Graphic: Graph of tanx.
There is an asymptote at x = ±π

2
,±3π

2
,±5π

2
, etc. But

polynomials don’t have asymptotes! How can any
polynomial perfectly approximate tanx?
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In fact, here are the first 6 Taylor polynomials for tanx
about x = 0:

Graphic: First 6 Taylor polynomials for tanx for x near 0.
From the picture, it looks like the Taylor series will only
converge to the piece of tanx that contains x = 0.
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6 Power series & intro to Taylor series
§9.5 Power series and interval of convergence

§10.1 Taylor polynomials

Application problems
� (§10.1 #48)
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(§10.1 #48)

When we model the motion of a pendulum, we
sometimes replace the differential equation (a
differential equation is an equation where derivatives
and higher-order derivatives of a function appear
alongside the independent variable of the function):

d2θ

dt2
= −g

l
sin θ by

d2θ

dt2
= −g

l
θ,

where θ is the angle between the pendulum and the
vertical (g is the gravitational constant and l is the
length of the pendulum).

Explain why, and under what circumstances, it is
reasonable to make this replacement.
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Soln: The problem is claiming that under certain
circumstances, sin θ ≈ θ.

We can verify this by using Taylor approximations. Let
f(θ) = sin θ. The linear approximation to f(θ) for θ near
0 is

f(θ) ≈ f(0) + f ′(0)(θ − 0)

= sin(0) + cos(0)θ

= θ.

Now the question is, under what circumstances is this
approximation reasonable? In other words, for what
values of θ does sin θ ≈ θ give a good approximation for
θ near 0?
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Here is a graph of f(θ) along with its linear
approximation P1(θ).

Graphic: sin θ and its linear approximation for θ near 0.

The approximation is pretty good, up until around
θ = ±π

4
.
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What does this mean for the pendulum?

Graphic: Pendulum with angle θ from the vertical.
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It means that as long as the pendulum doesn’t swing
more than 45◦ from the vertical, the approximation is
reasonable. If it does swing higher than that, then a
better approximation is needed (e.g., a higher degree
Taylor polynomial).
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Week 7 overview

7 Taylor series
§10.2 Taylor series

� Maclaurin series
� Binomial series
� Convergence of Taylor series

§10.3 Finding and using Taylor series
� Substitution
� Integration and differentiaion
� Multiplying Taylor series
� More examples

Application problems
� (1) (§10.2 #59)
� (2) (§10.3 #47)
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7 Taylor series
§10.2 Taylor series

� Maclaurin series
� Binomial series
� Convergence of Taylor series

§10.3 Finding and using Taylor series

Application problems
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Maclaurin series

The Taylor series expansion of a function f(x) about
the point x = a is given by

f(x) = f(a) + f ′(a)(x− a) +
f ′′(a)

2
(x− a)2

+
f ′′′(a)

3!
(x− a)3 + · · ·+ f (n)(a)

n!
(x− a)n + · · · .

? Note that we can write f(a) = f (0)(a)
0!

(x− a)0,

f ′(a)(x− a) = f ′(a)
1!

(x− a)1, and that 2 = 2!.

The Maclaurin series of f(x) is its Taylor series
expansion about x = 0.
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Here are some well-known Maclaurin series you should
memorize:

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·+ (−1)n

x2n+1

(2n+ 1)!
+ · · ·

cosx = 1− x2

2!
+
x4

4!
− x6

6!
+ · · ·+ (−1)n

x2n

(2n)!
+ · · ·

ex = 1 + x+
x2

2!
+
x3

3!
+
x4

4!
+ · · ·+ xn

n!
+ · · ·

? Since Taylor series are power series, use techniques
from §9.5 to find the intervals of convergence for these
series.
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Binomial series

A useful Taylor expansion in practice is the Maclaurin
series for f(x) = (1 + x)p, for any number p.

It is particularly useful when p is a fraction or a negative
number (note that when p is an integer, f(x) is just a
polynomial, and equal to its own Taylor series).
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The binomial series is given by

(1 + x)p = 1 + px+
p(p− 1)

2!
x2

+
p(p− 1)(p− 2)

3!
x3 +

p(p− 1)(p− 2)(p− 3)

4!
x4

+ · · ·+ p(p− 1) · · · (p− (n− 1))

n!
xn + · · ·

? See §10.2 for a derivation of this formula. See
Examples 1-2 for applications of it.
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Convergence of Taylor series

While certain functions equal their Taylor series exactly
for all x, most functions you will see in real life converge
to f(x) only for an interval.

? See §10.2 Example 3.

Example (§10.2 #37)
Find the radius of convergence for the Maclaurin series of
f(x) = 1√

1+x
.



Calculus II
(M102)

A. Wheeler
(she/her)

Week 4

§7.7

§9.1

§9.2

§9.3

APs

Week 5

§9.4

APs

Week 6

§9.5

§10.1

APs

Week 7

§10.2

§10.3

APs

We first graph the first several Taylor polynomials (about
x = 0) for f(x) to make a guess about its interval of
convergence.

Graphic: Taylor polynomials for f(x) = 1√
1+x

.

For |x| > 1, the Taylor polynomials seem to diverge from
f(x).
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The Maclaurin series for f(x) is a binomial series with
p = −1

2
, call it S.

S = 1− 1

2
x+
−1

2

(
−3

2

)
2

x2 +
−1

2

(
−3

2

) (
−5

2

)
3!

x3

+
−1

2

(
−3

2

) (
−5

2

) (
−7

2

)
4!

x4 + · · ·+ (−1)n(2n)!

(2nn!)2
xn + · · ·

? ˜PhysicsForums˜ has a thread where the formula for
the general term for the binomial series of 1√

1−x is
derived. Replacing x with −x in the formula creates the
factor (−1)n. In §10.3 we will use this trick and more!

https://www.physicsforums.com/threads/expansion-of-1-sqrt-1-x.596981/
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Use the Ratio Test, as in §9.5:

lim
n→∞

∣∣∣����(−1)n+1(2(n+1))!
(2n+1(n+1)!)2

x�
�n+1
∣∣∣∣∣∣���(−1)n(2n)!

(2nn!)2 �
�xn
∣∣∣ = |x| lim

n→∞

(2n+ 2)(2n+ 1)

(2(n+ 1))2

= |x| lim
n→∞

2n+ 1

2n+ 2

= |x|

=⇒ |x| < 1 and the radius of convergence is 1.
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7 Taylor series
§10.2 Taylor series

§10.3 Finding and using Taylor series
� Substitution
� Integration and differentiaion
� Multiplying Taylor series
� More examples

Application problems
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Substitution

In §10.2, we saw the Maclaurin series for sinx, cosx, ex,
and the binomial series. Here are a few other series you
will find useful.

1

1− x
= 1 + x+ x2 + · · ·+ xn + · · · for −1 < x < 1

ln(1− x) = −x− x2

2
− · · · − xn

n
− · · · for −1 ≤ x < 1

arctanx = x− x3

3
+
x5

5
− · · ·+ (−1)n

x2n+1

2n+ 1
+ · · ·

for −1 ≤ x ≤ 1
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• The first series is called the geometric series.
(Why?)

• Note that these series do not equal their respective
functions unless x is in the given interval of
convergence.

With these seven known series, we can derive other
Maclaurin series by plugging in expressions for x.

Example (§10.3 #4)
Find the first four non-zero terms of the Maclaurin series
for f(y) = ln(1− 2y).
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Substitute 2y for x into the Maclaurin series for
ln(1− x):

ln(1− 2y) = −2y − (2y)2

2
− (2y)3

3
− (2y)4

4
+ · · ·

To find the interval of convergence, we have
−1 ≤ 2y < 1 =⇒ −1

2
≤ y < 1

2
.
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Integration and

differentiation

Recall, the operation of integration is itself a(n infinite)
sum. This means we can integrate Taylor series
term-by-term to get new Taylor series.

? See §10.3 Example 3.

What’s less obvious though, is that we can differentiate a
Taylor series to get a new Taylor series. The following
theorem tells us we can.
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Theorem
If a Taylor series for f(x) about x = a converges to f(x)
for |x− a| < R, then the series found by term-by-term
differntiation is the Taylor series for f ′(x), and converges
to f ′(x) for all x in the same interval.

This means that when we differentiate a Taylor series, we
need to check the endpoints of the interval of
convergence.
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Example (§10.3 Example 2)
By differentiating term-by-term, one can show that the
Maclaurin series expansion of f(x) = 1

(1−x)2
is

f(x) =
d

dx

(
1

1− x

)
= 1 + 2x + 3x2 + 4x3 + · · · .

The theorem says the series converges to f(x) for
−1 < x < 1, because the series for 1

1−x converges on
that interval. We check the endpoints:
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x = −1:
The series becomes 1− 2 + 3− 4 + 5− 6 + · · · , which
diverges.

x = 1:
The series becomes 1 + 2 + 3 + 4 + 5 + 6 + · · · , which
diverges.

Therefore the Maclaurin series for 1
(1−x)2

converges for
−1 < x < 1.
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Multiplying Taylor series

It is fairly straightforward to find the Taylor series of a
function multiplied by a power of x, since we can just
multiply term-by-term.

What is less straightforward, however, is mutliplying two
Taylor series, i.e. infinite sums together. We use the
technique of gathering terms.

Example (§10.3 #25)
Find the Maclaurin series for et cos t.
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The Maclaurin series for et and cos t are known. We just
have to multiply them together.(

1 + t+
t2

2
+
t3

3!
+
t4

4!
+ · · ·

)(
1− t2

2
+
t4

4!
− t6

6!
+ · · ·

)
We gather terms according to the powers of t:

1 : 1 · 1
t : t · 1

t2 : 1 ·
(
−t

2

2

)
+
t2

2
· 1

t3 : t ·
(
−t

2

2

)
+
t3

3!
· 1

t4 : 1 · t
4

4!
+
t2

2
·
(
−t

2

2

)
+
t4

4!
· 1

...



Calculus II
(M102)

A. Wheeler
(she/her)

Week 4

§7.7

§9.1

§9.2

§9.3

APs

Week 5

§9.4

APs

Week 6

§9.5

§10.1

APs

Week 7

§10.2

§10.3

APs

We have

et cos t = 1 + t+

(
−1

2
+

1

2

)
t2 +

(
−1

2
+

1

3!

)
t3

+

(
1

4!
− 1

2
· 1

2
+

1

4!

)
t4 + · · ·

= 1 + t− 1

3
t3 − 1

6
t4 + · · ·

? Graph this function along with its fourth degree Taylor
approximation to verify this answer makes sense!
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More examples

Example (§10.3 #20)
Expand the quantity 1

a−r about 0 in terms of the variable
r
a

.

Soln: First use algebra to rewrite the quantity in terms
of r

a
.

1

a− r

( 1
a
1
a

)
=

1
a

1− r
a

=
1

a
· 1

1− r
a︸ ︷︷ ︸

geometric series
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The geometric series is given by

1

1− x
= 1 + x+ x2 + x3 + x4 + · · · ,

for |x| < 1. We replace x with r
a

and multiply by 1
a

:

1

a− r
=

1

a
· 1

1− r
a

=
1

a

(
1 +

r

a
+
(r
a

)2

+
(r
a

)3

+
(r
a

)4

+ · · ·
)
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Example (§10.3 #36)
For values of y near 0, put the following functions in
increasing order, using their Taylor expansions.

(a) ln (1 + y2)

(b) sin (y2)

(c) 1− cos y
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Soln: First write the Taylor series expansion for each
function.

(a)

ln (1− x) = −x− x2

2
− x3

3
− x4

4
− · · ·

=⇒ ln (1 + x) = ln (1− (−x))

= x− x2

2
+
x3

3
− x4

4
+ · · ·

=⇒ ln (1 + y2) = (y2)− (y2)2

2
+

(y2)3

3

− (y2)4

4
+ · · ·

= y2 − y4

2
+
y6

3
− y8

4
+ · · ·
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(b)

sinx = x− x3

3!
+
x5

5!
− x7

7!
+ · · ·

=⇒ sin (y2) = (y2)− (y2)3

3!
+

(y2)5

5!
− (y2)7

7!
+ · · ·

= y2 − y6

3!
+
y10

5!
− y14

7!
+ · · ·

(c)

cosx = 1− x2

2
+
x4

4!
− x6

6!
+ · · ·

=⇒ 1− cos y = 1−
(

1− y2

2
+
y4

4!
− y6

6!
+ · · ·

)
=
y2

2
− y4

4!
+
y6

6!
− · · ·
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To assess which function is bigger near y = 0, we can
truncate the higher degree terms of the Taylor series
expansions and just look at those of degree 4 or less. For
y close to 0, we have

y2

2
− y4

4!︸ ︷︷ ︸
≈1−cos y

< y2 − y4

2︸ ︷︷ ︸
≈ln (1+y2)

< y2︸︷︷︸
≈sin (y2)

.
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Finally, we can verify on ˜Desmos˜ by graphing each
function and zooming in near 0.

Graphic: Functions ln (1 + x2), sin (x2), and 1− cosx,
zoomed in near x = 0.
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7 Taylor series
§10.2 Taylor series

§10.3 Finding and using Taylor series

Application problems
� (1) (§10.2 #59)
� (2) (§10.3 #47)
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(1) (§10.2 #59)

Let i =
√
−1. We define eiθ by substituting iθ in the

Taylor series for ex. Use this definition to explain Euler’s
forumla

eiθ = cos θ + i sin θ.
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Soln: The Taylor (Maclaurin) series for eiθ is

eiθ = 1 + (iθ) +
(iθ)2

2
+

(iθ)3

3!
+

(iθ)4

4!
+

(iθ)5

5!
+ · · ·

= 1 + iθ − θ2

2
− iθ

3

3!
+
θ4

4!
+ i

θ5

5!
+ · · · .

Group the real and imaginary parts of eiθ:



Calculus II
(M102)

A. Wheeler
(she/her)

Week 4

§7.7

§9.1

§9.2

§9.3

APs

Week 5

§9.4

APs

Week 6

§9.5

§10.1

APs

Week 7

§10.2

§10.3

APs

=

(
1− θ2

2
+
θ4

4!
+ · · ·

)
+

(
iθ − iθ

3

3!
+ i

θ5

5!
+ · · ·

)
=

(
1− θ2

2
+
θ4

4!
+ · · ·

)
︸ ︷︷ ︸

cos θ

+i

(
θ − θ3

3!
+
θ5

5!
+ · · ·

)
︸ ︷︷ ︸

sin θ

= cos θ + i sin θ
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(2) (§10.3 #47)

A hydrogen atom consists of an electron, of mass m,
orbiting a proton, of mass M , where m is much smaller
than M . The reduced mass µ, of the hydrogen atom is
defined by

µ =
mM

m+M
.
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(a) Show that µ ≈ m.

(b) To get a more accurate approximation for µ, express
µ as m times a series in m

M
.

(c) The approximation µ ≈ m is obtained by
disregarding all but the constant term in the series.
The first-order correction is obtained by including
the linear term but no higher terms. If m ≈ M

1836
, by

what percentage does including the linear term
change the estimate µ ≈ m?
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Soln:

(a) Since we are assuming m << M , the denominator
of µ is close to M . Therefore we have

µ =
mM

m+M
≈ mM

M
= m.

(b) We first need to rewrite µ to get an expression in m
M

:

µ =
mM

m+M

( 1
M
1
M

)
=

m
m
M

+ 1
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The new expression for µ is a binomial series in −m
M

.
The binomial series is appropriate to use, since m << M
means m

M
< 1.

m
m
M

+ 1
= m

(
1

1−
(
−m
M

))

The series is:

m

(
1 +

(
−m
M

)
+
(
−m
M

)2

+
(
−m
M

)3

+
(
−m
M

)4

+ · · ·
)
.



Calculus II
(M102)

A. Wheeler
(she/her)

Week 4

§7.7

§9.1

§9.2

§9.3

APs

Week 5

§9.4

APs

Week 6

§9.5

§10.1

APs

Week 7

§10.2

§10.3

APs

(c) From the previous slide, the constant term of the
series is indeed m, so µ ≈ m. The linear term is
−m2

M
so we compare the linear term to the constant

term, making the substitution m ≈ M
1836

:

−m2

M

m
= −m

M
≈ −

M
1836

M

= − 1

1836
≈ −0.0005447

So the answer is ≈ −0.05447%. Higher terms will
only contribute smaller differences so this calculation
justifies the use of the approximation µ ≈ m.
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Week 8 overview

8 Review
Review: Integration

� Week 1: Intro to integration techniques
� Week 2: Advanced integration techniques
� Week 3: Applications of integration
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8 Review
Review: Integration

� Week 1: Intro to integration techniques
� Week 2: Advanced integration techniques
� Week 3: Applications of integration
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Review: Integration

§6.1-6.2, 7.1-7.2

§7.3-7.4

§8.1-8.2, 7.6

Week 1: Intro to integration

techniques
§6.1-6.2, 7.1-7.2

• (§6.1-6.2) Know the difference between a definite
and an indefinite integral. Know how to graph an
antiderivative of a function whose graph is given.
Use the Fundamental Theorem of Calculus.

? Questions like: §6.1 #5-13 (odds), 23, 29-33
(odds)
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Review: Integration

§6.1-6.2, 7.1-7.2

§7.3-7.4

§8.1-8.2, 7.6

• (§7.1) Integration by substitution (including abstract
problems, changing bounds on definite integrals).

? Questions like: §7.1 #3-65 (odds), 73-79 (odds),
89-93 (odds), 129

• (§7.2) Integration by parts (including abstract
problems, using IBP more than once). “Ultraviolet
voodoo”. LogPoET.

? Questions like: §7.2 #3-31 (odds), 35, 37, 71
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Review: Integration

§6.1-6.2, 7.1-7.2

§7.3-7.4

§8.1-8.2, 7.6

Example (§6.1 #10)
Sketch two functions F such that F ′ = f (f is given
below). In one case let F (0) = 0, and in the other case
let F (0) = 1.

Graphic: Graph of the function f .
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Review: Integration

§6.1-6.2, 7.1-7.2

§7.3-7.4

§8.1-8.2, 7.6

Soln:

Graphic: Two functions F , with F (0) = 0 and F (0) = 1.
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Review: Integration

§6.1-6.2, 7.1-7.2

§7.3-7.4

§8.1-8.2, 7.6

Week 2: Advanced

integration techniques
§7.3-7.4

• (§7.3) Use algebra to prepare an integral for use
with a table (completing the square, long division).

? Questions like: §7.3 #15-49 (odds), 53

• (§7.4) Integrate using partial fractions.

? Questions like: §7.4 #39-53 (odds)

• (§7.4, cont.) Trig substitutions, invoking the
triangle.

? Questions like: §7.4 #55-65 (odds)
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Example (§7.4 #42)
Find

∫
dz
z2+z

dz.

Soln: First factor z2 + z = z(z + 1). Then write

1

z(z + 1)
=
A

z
+

B

z + 1
.

To find A and B, get a common denominator on the
right hand side. Then match coefficients to get a system
of 2 equations in 2 unknowns.
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1

z(z + 1)
=
A

z

(
z + 1

z + 1

)
+

B

z + 1

(z
z

)
=⇒ 1 = Az + A+Bz

We have

0 = A+B =⇒ A = −B
1 = A =⇒ B = −1

The integral becomes∫
dz

z2 + z
=

∫
1

z
dz +

∫
−1

z + 1
dz

= ln z − ln (z + 1) + C.
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§6.1-6.2, 7.1-7.2

§7.3-7.4

§8.1-8.2, 7.6

Example (§7.4 #56)
Find

∫ √
1−4x2

x2
dx.

Soln: First rewrite 1− 4x2 = 4
(

1
4
− x2

)
. Then put

x = 1
2

sin θ =⇒ dx = 1
2

cos θ. We have

∫ 2
√

1
4
− x2

x2
dx = 2

∫ √
1
4
− 1

4
sin2 θ

1
4

sin2 θ
· 1

2
cos θ dθ

= 2

∫ 1

�4
cos2 θ

1

�4
sin2 θ

dθ

Now use the guidance from the table in the text.
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2

∫
cos2 θ

sin2 θ
dθ = 2

∫
1− sin2 θ

sin2 θ
dθ

= 2

(∫
csc2 θ dθ −

∫
dθ

)
= 2(− cot θ − θ) + C

Invoke the triangle:

Graphic: Triangle with sin θ = 2x.
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=⇒
∫ √

1− 4x2

x2
dx

= 2

(
−
√

1− 4x2

2x
− arcsin (2x)

)
+ C
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Week 3: Applications of

integration
§8.1-8.2, 7.6

• (§8.1-8.2) Volumes by discs and washers. No
volumes of known cross-section. No arc
length.
• Questions like: §8.2 #1-17 (odds), 41-45 (odds),

51

• (§7.6) Improper integrals: infinite bounds vs.
singularities in the integrand.

? Questions like: §7.6 #5-39 (odds)
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Example (§8.2 #18)
The region bounded by y = lnx, x = 0, y = ln 2, and
y = 0 is rotated around the y-axis. Write, then evaluate,
an integral giving the volume.

Soln:

Graphic: Region bounded by y = lnx, x = 0, y = ln 2,
and y = 0.
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Since the region is rotated around the y-axis, we write
the integral in terms of y.

The x-coordinate of the curve y = lnx gives the radius
of one disc. Solve for x: y = lnx =⇒ x = ey.

The bounds on y are from 0 to ln 2. The volume is∫ ln 2

0

π(ey)2 dy = π

∫ ln 2

0

e2y dy

=
π

2
e2y

∣∣∣∣ln 2

0

=
π

2

(
e2 ln 2 − e2(0)

)
=
π

2

((
eln 2
)2 − 1

)
=

3

2
π.
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Example (§7.6 #24)
Calculate the integral

∫ 1

−1
dt√
t+1

if it converges.

Soln: There is a singularity at t = −1. We use the
placeholder variable a and take the limit as a→ −1 from
the right. ∫ 1

−1

dt√
t+ 1

= lim
a→−1+

∫ 1

a

dt√
t+ 1

To evaluate the integral, use a linear substitution
w = t+ 1 =⇒ dw = dt. The bounds become
w(a) = a+ 1 and w(1) = 1 + 1 = 2.
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§7.3-7.4

§8.1-8.2, 7.6 lim
a→−1+

∫ 1

a

dt√
t+ 1

= lim
a→−1+

∫ 2

a+1

dw√
w

= 2 lim
a→−1+

√
w

∣∣∣∣2
a+1

= 2 lim
a→−1+

(
√

2−
√
a+ 1)

= 2(
√

2−
√

0) = 2
√

2
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