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One of the most elegant properties of projective geometry is the principle of duality,
which asserts (in a projective plane) that every definition remains significant, and every
theorem remains true, when we consistently interchange the words point and line (and
consequently interchange lie on and pass through, join and intersection, collinear and
concurrent, etc.).

Axiom 14.12. Any two lines are incident with at least one point.

Theorem. Any two distinct lines are incident with just one points.

Axiom 14.13. The exist four points of which no three are collinear.
Axiom 14.14 (Fano’s axiom) The three diagonal points of a complete quadrangle are

never collinear.
Axiom 14.15. (Pappus’s theorem) If the six vertices of a hexagon lie alternately on

two lines, the three points of intersection of pairs of opposite sides are collinear.
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Let A1A2B1B2C1C2 denote the hexagon from Pappus’s theorem. The points of in-
tersection of pairs of opposite sides are A3 = B1C2 · B2C1, B3 = C1A2 · C2A1, C3 =
A1B2 · A2B1. The axiom asserts that these three points are collinear. Another way to
express the same result is to arrange the 9 points in the form of a matrix∥∥∥∥∥∥

A1 B1 C1

A2 B2 C2

A3 B3 C3

∥∥∥∥∥∥ .
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In trying to compute a “determinant” of this matrix we get a sum of six terms of the form
AiBjCk. This matrix notation will indicate for each i 6= j 6= k the points Ai, Bj , Ck are
collinear, as well as points in the same row.

Two triangles, with their vertices named in a particular order, are said to be per-
spective from a point (or briefly “perspective”) means their three pairs of corresponding
vertices are joined by concurrent lines. Dually, two triangles are said to be perspective
from a line means their three pairs of corresponding sides meet in collinear points.
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Theorem(Desargues’s Theorem). If two triangles are perspective from a point, then
they are perspective from a line, and conversely.
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Proof. Let two triangles PQR and P ′Q′R′ be perspective from O, and let their corre-
sponding sides meet in points

D = QR ·Q′R′ E = RP ·R′P ′ F = PQ · P ′Q.

It is enough to show D,E, F are collinear. The converse will follow from duality. After
defining four further points

S = PR ·Q′R′ T = PQ′ ·OR
U = PQ ·OS V = P ′Q′ ·OS,

we can apply Pappus’s theorem; in the “matrix” notation we have

∥∥∥∥∥∥
O Q Q′

P S R
D T U

∥∥∥∥∥∥ ,
∥∥∥∥∥∥
O P P ′

Q′ R′ S
E V T

∥∥∥∥∥∥ ,
∥∥∥∥∥∥
P Q′ T
V U S
D E F

∥∥∥∥∥∥ .

The last row of the last matrix exhibits the desired collinearity. �

A quadrangular set of points is the section of the six sides of a complete quadrangle
by any line that does not pass through a vertex.
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Theorem. Each point of a quadrangular set is uniquely determined by the remaining
points.
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Proof. Let PQRS be a complete quadrangle. Let g denote a line passing through all six
sides of PQRS, not containing any of the points P,Q,R, S. Label the intersection points
as follows:

A = g · PS D = g ·QR
B = g ·QS E = g · PR
C = g ·RS F = g · PQ.

By relabelling, it is enough to show F is uniquely determined by A,B,C,D,E. Let
P ′Q′R′S′ denote a second quadrangle such that its sides Q′R′, P ′R′, P ′Q′, P ′S′, Q′S′ re-
spectively pass through the points A,B,C,D,E. By construction, the triangles PRS and
P ′R′S′ are perspective from the line g. By the converse of Desargues’s theorem, PRS and
P ′R′S′ are also perspective from a point, given by PP ′ · RR′ = RR′ · SS′ = SS′ · PP ′.
Similarly, perspectivity of the triangles QRS and Q′R′S′ imply QQ′ ·RR′ = RR′ · SS′ =
SS′ · QQ′. So in fact, PQRS and P ′Q′R′S′ are “perspective quadrangles” from a point.
By the direct form of Desargues’s theorem, the triangles PQR and P ′Q′R′ are perspective
from the line DE = g; that is, PQ and P ′Q′ both meet g in the same point F . �

In the above construction, PS is opposite to RQ, QS is opposite to PR, and RS is
opposite to PQ. This correspondence is reflected in the symbol (AD)(BE)(CF ). In fact,
if we permute A,B,C and apply the same permutation to D,E, F then the statement
remains valid. We can also get equivalent statements by permuting the sides of PQRS. If
we interchange QS and RP and define A,B,C,D,E, F as in the theorem then we get the
equivalent statement (AD)(EB)(FC).
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Similarly, we can get the statements (DA)(BE)(FC) and (DA)(EB)(CF ). Finally,
suppose we define R′ = QR · SF and P ′ = PS ·QC.
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We can apply Pappus’s Theorem to the hexagon PRQCFS according to the scheme∥∥∥∥∥∥
P F Q
C R S
R′ P ′ E

∥∥∥∥∥∥ ,
with the conclusion that R′P ′ passes through E. Thus

A = g · P ′S D = g ·QR′

B = g ·QS E = g · P ′R′

C = g ·R′S F = g · P ′Q,

a quadrangular set induced by (AD)(BE)(FC). In other words (AD)(BE)(CF ) implies
(AD)(BE)(FC), and we can ultimately conclude

Theorem. (AD)(BE)(CF ) implies (DA)(EB)(FC). �

Solid Projective Geometry
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The principle of duality changes in three-dimensional projective space. Rather than
between points and lines, a correspondence exists between points and planes. Given two
intersecting lines, a and b, their intersection a · b is a point, and their span determines a
plane ab. Consequently, lines are self-dual.

Let PQRS be a complete quadrangle with quadrangular set (AD)(BE)(CF ) on the
line g. In another plane containing g, let P ′Q′R′ form a triangle such that A, B, and
C lie respectively on the lines Q′R′, P ′R′, and P ′Q′. Let S′ denote the intersection of
the lines DP ′ and EQ′. The result from the previous section says (DA)(EB)(FC) is a
quadrangular set, which then implies S′ lies on FR′. The following results rely on this
observation.
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Definition. Two lines that do not intersect are said to be skew.

Theorem(Gallucci’s Theorem). If three skew lines all meet three other skew lines, any
transversal to the first set of three meets any transversal to the second set.

Proof. Let the two sets of lines be PQ′, P ′Q,RS;PQ,P ′Q′, R′S. The picture remains
consistent with the hypothesis; the points P,A,Q′ determine a plane containing S and
R′, by construction. The lines R′S and PQ′ thus meet in that plane. Similarly, Q,B,R′

determine a plane in which P ′Q and R′S intersect. The other seven intersections PQ′ ·
PQ,RS · PQ,PQ′ · P ′Q′, RS · P ′Q′, P ′Q · PQ,RS ·R′S, P ′Q · P ′Q′ are evident.
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Without loss of generality we can assert the transversal to the first set of three lines
passes through R. The transversal from R to PQ′ and P ′Q is the intersection of the planes

RPQ′ ·RP ′Q = REQ′ ·RP ′D
= RS′Q′ ·RS′D
= RS′.
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Likewise, the transversal from R′ to PQ and P ′Q′ is R′PQ·R′P ′Q′ = R′FQ·R′FQ′ =
R′F . Since S′ lies on R′F , these transversals meet, as desired. �

Theorem (Möbius’s Theorem). If the four vertices of one tetrahedron lie respectively
in the four face planes of another, while three vertices of the second lie in three face planes
of the first, then the remaining vertex of the second lies in the remaining face plane of the
first.

Proof. Assert that by definition, the four points of a tetrahedron do not lie on the same
plane. Let P ′, Q′, R′, S denote the second tetrahedron. We will construct the first tetra-
hedron to satisfy the hypothesis. Without loss of generality, choose P ∈ Q′R′S and
Q ∈ P ′R′S. The line PQ will lie on two different faceplanes of the first tetrahedron, at
least one of which must contain one of the points P ′, Q′, R′, S. Choose R ∈ P ′Q′S ∩PQS
so that PQR contains S; thusfar in the construction P ′ and Q′ are symmetrically indistin-
guishable so if, for example, we chose R ∈ P ′Q′S such that PQR contains P ′ (respectively,
Q′), we could rename the points for the sake of simplicity of notation by interchanging P
(resp. Q) with S′ and S with P ′ (resp. Q′). Finally, we must have S′ ∈ P ′Q′R′ so that
at least one of the two faceplanes containing the line RS′ also contains one of P ′, Q′, R′.
(WHY NOT CHOOSE R′?) Again, P ′ and Q′ are symmetrically indistinguishable so
choose S′ such that P ′ ∈ QRS′.

Now PQRS′ and P ′Q′R′S form the two tetrahedra, while P,Q,R, S and P ′, Q′, R′, S′



9

lie in respective planes. Thus the following six points form a quadrangular set

A = PS ∩Q′R′ D = QR ∩ P ′S′

B = QS ∩ P ′R′ E = PR ∩Q′S′

C = RS ∩ P ′Q′ F = PQ ∩R′S′

and we have the respective containment of points in planes

P ∈ Q′R′S P ′ ∈ QRS′

Q ∈ P ′R′S Q′ ∈ PRS′

R ∈ P ′Q′S S ∈ PQR
S′ ∈ P ′Q′R′.

Since R′S′ passes through F , which lies on PQ, the remaining vertex R′ lies in the re-
maining plane PQS′, as desired. �

If we make the following notation change

S = S P ′ = S23

P = S14 Q′ = S13

Q = S24 R′ = S12

R = S34 S′ = S1234

then we can deduce the first of a remarkable “chain” of theorems due to Homersham Cox.

Theorem (Cox’s First Theorem). Let σ1, . . . , σ4 be four planes of general position
through a point S. Let Sij be an arbitrary point on the line σi · σj. Let σijk denote
the plane SijSikSjk. Then the four planes σ234, σ134, σ124, σ123 all pass through one point
S1234.

In our context, σ1, σ2, σ3, σ123 are the face planes of the tetrahedron P ′Q′R′S, while
σ234, σ134, σ124, σ4 are those of the inscribed-circumscribed tetrahedron PQRS′. Let σ5
be a fifth plane through S. Then S15, S25, S35, S45 are four points in σ5; σij4 is a plane
through the line Si5Sj5; and Sijk5 is the point σij5 · σik5 · σjk5. By the dual of Cox’s first
theorem, the four points S2345, S1345, S1245, S1235 all lie in one plane. Interchanging the
roles of σ4 and σ5, we see that S1234 lies in this same plane S2345S1345S1245, which we
naturally call σ12345. Hence

Theorem (Cox’s Second Theorem). Let σ1, . . . , σ5 be five planes of general position
through S. Then the five points S2345, S1345, S1245, S1235, S1234 all lie in one plane σ12345.

Adding the extra digits 56 to all the subscripts in the first theorem, we deduce

Theorem (Cox’s Third Theorem). The six planes σ23456, σ13456, σ12456, σ12356, σ12346, σ12345
all pass through one point S123456.
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The pattern is now clear: we can continue indefinitely. “Cox’s (d-3)rd theorem”
provides a configuration of 2d−1 points and 2d−1 planes, with d of the planes through each
point and d of the points in each plane.

An interesting variant of Cox’s chain of theorems can be obtained by means of the
following specialization. Instead of an arbitrary point on the line σi·σj , we take Sij to be the
second intersection of this line with a fixed sphere through S. Since the sphere is a quadric
through the first seven of the eight associated points S, S14, S24, S34, S23, S13, S12, S1234,
it passes through S1234 too, and similarly through S1235 and the rest of the 2d−1 points.
The 2d−1 planes meet the sphere in 2d−1 circles, which remain circles when we make an
arbitrary stereographic projection. We thus obtain Clifford’s chain of theorems in the
Euclidean plane.

Theorem (Clifford’s First Theorem). . Let s1, s2, s3, s4 be four circles of general
position through a point S. Let Sij be the second intersection of the circles si and sj. Let
sijk denote the circle SijSikSjk. Then the four circles s234, s134, s124, s123 all pass through
one point S1234.

Theorem (Clifford’s Second Theorem). . Let s5 be a fifth circle through S. Then the
five points S2345, S1345, S1235, S1234 all lie on one circle s1235.

Theorem (Clifford’s Third Theorem). The six circles s23456, s13456, s12456, s12356, s12346, s12345
all pass through one point S123456.

And so on!
Since the equation of the general quadric has 10 terms, a unique quadric S = 0 can

be drawn through nine points of general position; for, by substituting each of the nine
given sets of x’s in S = 0, we obtain nine linear equations to solve for the mutual ratios
of the ten c’s. Similarly, a “pencil” (or singly infinite system) of quadrics S + uS′ = 0
can be drawn through eight points of general position, and a “bundle” (or doubly infinite
system) of quadrics S + uS′ + vS′′ = 0 can be drawn through seven points of general
position. But, by solving the simultaneous quadratic equations S = 0, S′ = 0, S′′ = 0,
for the mutual ratios of the four x’s, we obtain eight points of intersection for these three
quadrics. Naturally these eight points lie on every quadric of the bundle. Hence

Seven points of general position determine a unique eighth point, such that every
quadric through the seven passes also through the eighth.

This idea of the eighth associated point provides an alternative proof for Cox’s first
theorem (and therefore also for the theorems of Möbius and Gallucci). Let S1234 be defined
as the common point of the three planes σ234, σ134, σ124. (The theorem states that S1234 lies
also on σ123). Since the plane pairs σ1σ234, σ2σ134, σ3σ124 form three degenerate quadrics
through the eight points S, S14, S24, S34, S13, S12, S1234, these are eight associated points.
The first seven belong also to the plane pair σ4σ123. Since S1234 does not lie in σ4, it must
lie in σ123, as desired.
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