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Tips for Success

@ Attend class every day. Participate in math discussions. Do the
lecture-cises fully, not just on a scratch paper.

@ Don't get behind on MLP homeworks. Stay on top of the book
problems.

@ Find a study partner(s) to meet with on a regular basis. Don't be
afraid to seek further assistance (tutoring, office hours, etc.) if you
are struggling.

@ high school calculus # college calculus

@ REMEMBER... THE TERM STARTS TODAY! SO DOES THE
EVENTUAL EARNING OF YOUR FINAL GRADE!!!

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Part 1. Limits

19-22 January

o Wednesday 20 January
§2.1 The Idea of Limits

® Book Problems

§2.2 Definition of Limits
e Friday 22 January
o Definition of a Limit of a Function
o Determining Limits from a Graph
e Determining Limits from a Table
® One-Sided Limits
o Relationship Between One- and Two-Sided Limits
o Book Problems

§2.3 Techniques for Computing Limits
o Limit Laws
o Limits of Polynomials and Rational Functions

25-29 January
o Monday 25 January
e Additional (Algebra) Techniques
o Another Technique: Squeeze Theorem
® Book Problems
§2?4734hﬁ7ﬂ7§@ {lijgpyg done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
o Definition of Infinite Limits
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Part 1. Limits (cont.)

o Wednesday 27 January

o Definition of a Vertical Asymptote
o Summary Statements

® Book Problems

§2.5 Limits at Infinity
o Horiztonal Asymptotes
o Infinite Limits at Infinity
o Friday 29 January
o Algebraic and Transcendental Functions

1-5 February

o Monday 1 February
® Book Problems

§2.6 Continuity
o Continuity Checklist
e Continuity Rules
e Continuity on an Interval
o Wednesday 3 February
e Continuity of Functions with Roots
e Continuity of Transcendental Functions
e Intermediate Value Theorem (IVT)
e Friday 5 February

o Book Problems
The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

§2.7 Precise Definitions of Limits
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Week 4

Part 1. Limits (cont.)

e candd
@ Seeing es and Js on a Graph
o Finding a Symmetric Interval

8-12 February

o Monday 8 February
® Book Problems

§3.1 Introducing the Derivative
o Derivative Defined as a Function
e Leibniz Notation
o Other Notation
o Wednesday 10 February
o Graphing the Derivative
o Differentiability vs. Continuity
o Book Problems

Exam #1 Review
o Other Study Tips

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wiae 1 il T (s G (Ui

2.2 Definition of Limits
2.3 Techniques for Computing Limits

Wed 20 Jan

Welcome to Cal I!

@ comp.uark.edu/~ashleykw/CallSpring2016/callspri6.html
Course website. All information is here, including a link to MLP,
lecture slides, administrative information, etc. You should have
already seen the syllabus by now.

@ MyLabsPlus (MLP) has the graded homework. Solutions to Quizzes
and Drill exercises will be posted there, under “Menu — Course
Tools — Document Sharing”.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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http://comp.uark.edu/~ashleykw/Cal1Spring2016/cal1spr16.html
comp.uark.edu/~ashleykw/Cal1Spring2016/cal1spr16.html
http://comp.uark.edu/~ashleykw/Cal1Spring2016/syllabusCal1Spring2016.pdf

Wiae 1 2.1 The Idea of Limits

2.2 Definition of Limits
2.3 Techniques for Computing Limits

Wed 20 Jan (cont.)

@ Lecture slides are available on the course website. I'll try to have
the week's slides posted in advance but the individual lectures
might not be posted until right before class. Don’t try to take
notes from the slides. Instead, print out the slides beforehand or
else follow along on your tablet/phone/laptop. You should,
however, take notes when we do exercises during lecture.

@ For old Calculus materials, see the parent page
comp.uark.edu/~ashleykw and look for links under “Previous
Semesters”.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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comp.uark.edu/~ashleykw

Week 1 AR RRp T

Week 252 Definition of Limits
el 2.3 Techniques for Computing Limits
Week 4 :

© 10-22 January

§2.1 The Idea of Limits

® Book Problems

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Wiae 1 2.1 The Idea of Limits

2.2 Definition of Limits
2.3 Techniques for Computing Limits

§2.1 The Idea of Limits

Question

How would you define, and then differentiate between, the
following pairs of terms?

@ instantaneous velocity vs. average velocity?

@ tangent line vs. secant line?

(Recall: What is a tangent line and what is a secant line?)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1
Week 2
Week 3
Week 4

2.1 The Idea of Limits
2.2 Definition of Limits
2.3 Techniques for Computing Limits

Example

An object is launched into the air. Its position s (in feet) at any time ¢
(in seconds) is given by the equation:

s(t) = —4.9t* + 30t + 20.

(a) Compute the average velocity of the object over the following time
intervals: [1,3], [1,2], [1, 1.5]

(b) As your interval gets shorter, what do you notice about the average
velocities? What do you think would happen if we computed the
average velocity of the object over the interval [1,1.2]7 [1,1.1]?
[1,1.05]7

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wk 1 2.1 The Idea of Limits

Wz 2 BlolDetnitionloflllinits
Wz & 2.3 Techniques for Computing Limit
\/\/Gek 4 . echniques ror omputing mits

Example, cont.

An object is launched into the air. Its position s (in feet) at any time ¢
(in seconds) is given by the equation:

s(t) = —4.9t> + 30t + 20.

(c) How could you use the average velocities to estimate the
instantaneous velocity at t = 17

(d) What do the average velocities you computed in 1. represent on the
graph of s(t)?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wk 1 2.1 The Idea of Limits

N D)
WSS 2.2 Definition of Limits
Week 4 2.3 Techniques for Computing Limits

Question

What happens to the relationship between instantaneous
velocity and average velocity as the time interval gets shorter?

Answer: The instantaneous velocity at ¢t = 1 is the limit of
the average velocities as ¢ approaches 1.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wk 1 2.1 The Idea of Limits

N D)
week 2 22 Definition of Limits
Week 4 2.3 Techniques for Computing Limits

Question

What about the relationship between the secant lines and the
tangent lines as the time interval gets shorter?

Answer: The slope of the tangent line at (1,45.1 = s(1)) is
the limit of the slopes of the secant lines as ¢ approaches 1.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.1 The Idea of Limits

o 2.2 Definition of Limits
Wz & 2.3 Techniques for Computing Limit
\’VGFR 4 . echniques ror omputing Limits

2.1 Book Problems
1-3, 7-13, 15, 21, 25, 27, 29 J

Even though book problems aren’t turned in, they're a very
good way to study for quizzes and tests (wink wink wink).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wz 2 2.2 Definition of Limits
Wz & 2.3 Techniques for Computing Limit
\/\/GEL( 4 . echniques ror omputing mits

© 10-22 January

§2.2 Definition of Limits
e Friday 22 January
o Definition of a Limit of a Function
e Determining Limits from a Graph
e Determining Limits from a Table
® One-Sided Limits
o Relationship Between One- and Two-Sided Limits
o Book Problems

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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2.2 Definition of Limits
2.3 Techniques for Computing Limits

§2.2 Definition of Limits

Question
@ Based on your everyday experiences, how would you
define a “limit"?
@ Based on your mathematical experiences, how would you
define a “limit"?

@ How do your definitions above compare or differ?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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2.2 Definition of Limits
2.3 Techniques for Computing Limits

Fri 22 Jan

@ comp.uark.edu/~ashleykw/CallSpring2016/callspri6.html
Course website. All information is here, including a link to MLP,
lecture slides, administrative information, etc. You should have
already seen the syllabus by now.

@ MyLabsPlus (MLP) has the graded homework. Solutions to Quizzes
and Drill exercises will be posted there, under “Menu — Course
Tools — Document Sharing”.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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http://comp.uark.edu/~ashleykw/Cal1Spring2016/cal1spr16.html
comp.uark.edu/~ashleykw/Cal1Spring2016/cal1spr16.html
http://comp.uark.edu/~ashleykw/Cal1Spring2016/syllabusCal1Spring2016.pdf

Wiae 1 The Idea of Limits

2.1
2.2 Definition of Limits
2.3 Techniques for Computing Limits

Fri 22 Jan (cont.)

@ Lecture slides are available on the course website. I'll try to have
the week’s slides posted in advance but the individual lectures
might not be posted until right before class. Don’t try to take
notes from the slides. Instead, print out the slides beforehand or
else follow along on your tablet/phone/laptop. You should,
however, take notes when we do exercises during lecture.

@ For old Calculus materials, see the parent page
comp.uark.edu/~ashleykw and look for links under “Previous
Semesters”.

@ Next week: Attendance using clickers.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 15 1 The Idea of Limits
2.2 Definition of Limits
2.3 Techniques for Computing Limits

Definition of a Limit of a Function

Definition (limit)

Suppose the function f is defined for all x near a, except
possibly at a. If f(x) is arbitrarily close to L (as close to L as
we like) for all x sufficiently close (but not equal) to a, we

write
lim f(z) =L

Tr—a

and say the limit of f(z) as = approaches a equals L.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1 I RERMRRpS i

Wesad 2.2 Definition of Limits
Week 3 2.3 Techni for G ting Limit:
Week 4 . echniques for Compu ing Limr S

Determining Limits from a Graph

Exercise
' Determine the following:
I (@) h(1)
(b) h(2)
(c) h(4)
(d) limg—2 h(x)
| (e) limg_,4 h(ZE)
o 1 2 N x (f) hmz—)]_ h(I)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.1 The Idea of Limits

- 2.2 Definition of Limits
Wz & 2.3 Techniques for Computing Limits
Week 4 : a P g

Question
Does lim,_,, f(x) always equal f(a)?

(Hint: Look at the example from the previous slide!)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Wz 2 2.2 Definition of Limits
Wz & 2.3 Techniques for Computing Limit
\'VGFL( 4 . echniques ror omputing mits

Determining Limits from a Table

Exercise
2 + 1 — 20
x—4
(a) Create a table of values of f(z) when

Suppose f(x) =

z =3.9,3.99,3.999, and
z =4.1,4.01,4.001

(b) What can you conjecture about lim,_,4 f(x)?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wiae 1 2.1 The Idea of Limits

2.2 Definition of Limits
2.3 Techniques for Computing Limits

One-Sided Limits

Up to this point we have been working with two-sided limits;
however, for some functions it makes sense to examine
one-sided limits.

Notice how in the previous example we could approach f(z)
from both sides as = approaches a, i.e., when x > a and when

T < a.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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N D)
WEE2 2.2 Definition of Limits
Week 4 2.3 Techniques for Computing Limits

Definition (right-hand limit)

Suppose f is defined for all x near a with > a. If f(z) is arbitrarily
close to L for all x sufficiently close to a with x > a, we write

lim f(z)=1L
z—at

and say the limit of f(z) as x approaches a from the right equals L.

Definition (left-hand limit)

Suppose f is defined for all z near a with < a. If f(z) is arbitrarily
close to L for all x sufficiently close to a with x < a, we write
lim f(z)=1L
r—a—

and say the limit of f(x) as = approaches a from the left equals L.

v

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 21 The_ I.d.ea of Lir.nit.s
Week 3 22 Deﬁnn.:lon of Limits _ o
Week 4 2.3 Techniques for Computing Limits
Exercise
Vi Determine the following:

(a) 9(2)
(b) lim, o+ g(z)
/ (c) limy—o- g(x)
(d)

d) lim, 9 g(2)

5
4 [t
3
2

Fanl
o
o

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 2 e -
Week 3 2.2 Definition of Limits
\\/L;l; _I 2.3 Techniques for Computing Limits

Relationship Between One- and Two-Sided Limits

Theorem

If f is defined for all x near a except possibly at a, then lim,_,, f(z) = L
if and only if both lim,_,,+ f(z) = L and lim,_,,- f(x) = L.

In other words, the only way for a two-sided limit to exist is if
the one-sided limits equal the same number (L).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.1 The Idea of Limits

- 2.2 Definition of Limits
el 2.3 Techniques for Computing Limits
Week 4 )

2.2 Book Problems
1-4, 7, 9, 11, 13, 19, 23, 29, 31

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Wezkdl 2.1 The Idea of Limits

Week 252 Definition of Limits
ez 2.3 Techniques for Computing Limits
Week 4 . a P! g

§2.3 Techniques for Computing Limits

o Limit Laws

e Limits of Polynomials and Rational Functions
© 1922 January

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 2 e o
Week 3 2.2 Definition of Limits
\\,L; 2 2.3 Techniques for Computing Limits

§2.3 Techniques for Computing Limits

Exercise
Given the function f(z) = 42+ 7, find lim,_, 5 f(z)

(a) graphically;

(b) numerically (i.e., using a table of values near —2)

(c) via a direct computation method of your choosing.

Compare and contrast the methods in this exercise — which is the most
favorable?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wiae 1 2.1 The Idea of Limits

2.2 Definition of Limits
2.3 Techniques for Computing Limits

This section provides various laws and techniques for determining limits.
These constitute analytical methods of finding limits. The following is
an example of a very useful limit law:

Limits of Linear Functions: Let a, b, and m be real numbers. For linear
functions f(x) = mx + b,

lim f(z) = f(a) = ma+0b.

r—a

This rule says we if f(x) is a linear function, then in taking the limit as
T — a, we can just plug in the a for x.

IMPORTANT! Using a table or a graph to compute limits, as in the
previous sections, can be helpful. However, “analytical” does not include
those techniques.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wiae 1 2.1 The Idea of Limits

2.2 Definition of Limits
2.3 Techniques for Computing Limits

Limit Laws

Assume lim,_,, f(z) and lim,_,, g(x) exist, c is a real number, and m, n
are positive integers.

1. Sum: lim, . (f(z) 4+ g(2)) = limg—q f(x) + limg_yq g(z)

2. Difference:
limg—q (f(2) — g(x)) = limg—q f(2) — limg—q g(2)

In other words, if we are taking a limit of two things added
together or subtracted, then we can first compute each of their
individual limits one at a time.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wiae 1 2.1 The Idea of Limits

2.2 Definition of Limits
2.3 Techniques for Computing Limits

Limit Laws, cont.

Assume lim,_,, f(x) and lim,_,, g(x) exist, c is a real number, and m,n
are positive integers.

3. Constant Multiple: lim,_,, (cf(z)) = ¢ (limg—q f(2))

4. Product: lim,_, (f(2)g(x)) = (limy—, f(2)) (limy—q g(2))

The same is true for products. If one of the factors is a constant,
we can just bring it outside the limit. In fact, a constant is its own
limit.
The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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WSS 2.2 Definition of Limits
Week 4 2.3 Techniques for Computing Limits

Limit Laws, cont.

Assume lim,_,, f(z) and lim,_,, g(z) exist, c is a real number, and m, n
are positive integers.

_ x—a

~ lim g(z)

Tr—a

T
x

lim f(z)
5. Quotient: lim,_,, <%>

(provided lim,_,, g(x) # 0)

Question
Why the caveat? J

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Nee D
ti;t : 2.2 Definition of Limits
\'\L;L; _i 2.3 Techniques for Computing Limits

Limit Laws, cont.

Assume lim,_,, f(z) and lim,_,, g(z) exist, c is a real number, and m,n
are positive integers.

6. Power: lim,_,, (f(z))" = (limg—, f(2))"

7. Fractional Power: lim,_,, (f(z))™ = (limy_q f(z))™

(provided f(z) > 0 for = near a if m is even and > is in lowest
terms)

Question J

Explain the caveat in 7.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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2.2 Definition of Limits
2.3 Techniques for Computing Limits

Limit Laws, cont.

Laws 1.-6. hold for one-sided limits as well. But 7. must be modified:

7. Fractional Power (one-sided limits):

o limgqe (£())7 = (limg g f(2))
(provided f(x) > 0 for x near a with = > a, if m is even
and ™ is in lowest terms)

o limg o (f())7 = (limg - f(2)
(provided f(x) > 0 for = near a with © < a, if m is even
and = is in lowest terms)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wiae 1 2.1 The Idea of Limits
2.2 Definition of Limits
2.3 Techniques for Computing Limits

Limits of Polynomials and Rational Functions

Assume that p(x) and ¢g(z) are polynomials and a is a real number.

@ Polynomials: lim,_,, p(x) = p(a)

@ Rational functions: lim,_., @ = ala)
(provided ¢(a) # 0)
For polynomials and rational functions we can plug in a to compute the

limit, as long as we don’t get zero in the denominator. Linear functions
count as polynomials. A rational function is a “fraction” made of

polynomials.
The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wezkdl 2.1 The Idea of Limits

Week 252 Definition of Limits
ez 2.3 Techniques for Computing Limits
Week 4 . a P! g

Exercise
Evaluate the following limits analytically.

1. lim, 1 M, given that

:£1—>m1 f(xz) =5, il_}ml g(x) = -2, and il_)rn1 h(z) = —4.

4z%432—6

2. hmm_>3 273

3. limg_,;- g(x) and lim,_,;+ g(x), given that

2 if z <1,
z+2 ifzx>1.

g(z) =

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

Mon 25 Jan

@ comp.uark.edu/~ashleykw/CallSpring2016/callspri6.html
Course website. All information is here, including a link to MLP,
lecture slides, administrative information, etc. You should have
already seen the syllabus by now.

@ MyLabsPlus (MLP) has the graded homework. Solutions to Quizzes
and Drill exercises will be posted there, under “Menu — Course
Tools — Document Sharing”.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

Mon 25 Jan (cont.)

@ Lecture slides are available on the course website. I'll try to have
the week’s slides posted in advance but the individual lectures
might not be posted until right before class. Don’t try to take
notes from the slides. Instead, print out the slides beforehand or
else follow along on your tablet/phone/laptop. You should,
however, take notes when we do exercises during lecture.
Suggestion: When printing the slides, put more than one slide per
page and print double-sided.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

Mon 25 Jan (cont.)

@ For old Calculus materials, see the parent page
comp.uark.edu/~ashleykw and look for links under “Previous
Semesters”.

@ GET YOUR CLICKER
@ Note: There is no Blackboard for this course.

@ Stay on top of the MLP! First deadline is coming up. Don't wait till
the last minute.

@ MLP issues...
@ Quiz 1 is due in drill tomorrow. See MLP for a copy.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

Additional (Algebra) Techniques

When direct substitution (a.k.a. plugging in a) fails try using algebra:

@ Factor and see if the denominator cancels out.

Example

32742

limt—>2 P

@ Look for a common denominator.

Example

1 1
: 5+h 5
hmh_m —

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

Exercise

Evaluate lim,_,5 ¥35116=5

s—3

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

Another Technique: Squeeze Theorem

This method for evaluating limits uses the relationship of
functions with each other.

Theorem (Squeeze Theorem)

Assume f(z) < g(x) < h(x) for all values of x near a, except possibly at
a, and suppose
lim f(z) = lim h(z) = L.
Then since g is always between f and h for x-values close enough to a,
we must have
lim g(z) = L.

rT—a

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

Example
(a) Draw a graph of the inequality

—|z| < 2*In (2?) < |z].

(b) Compute lim,_,o 2% In (2?).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

2.3 Book Problems

12-30 (every 3rd problem), 33, 39-51 (odds), 55, 57, 61-67
(odds)

In general, review your algebra techniques, since they can save
you some headache.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

e Summary Statements
e Book Problems

e 25-29 January

§2.4 Infinite Limits
o Definition of Infinite Limits
o Wednesday 27 January
o Definition of a Vertical Asymptote

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

§2.4 Infinite Limits

We have examined a number of laws and methods to evaluate
[imits.

Question
Consider the following limit:

How would you evaluate this limit?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

In the next two sections, we examine limit scenarios involving infinity.
The two situations are:

@ Infinite limits: as x (i.e., the independent variable) approaches a
finite number, y (i.e., the dependent variable) becomes arbitrarily
large or small

looks like:  lim  f(z) = +o0
x—number

@ Limits at infinity: as x approaches an arbitrarily large or small
number, y approaches a finite number

looks like: lim f(z) = number
r—Foo

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

Definition of Infinite Limits

Definition (positively infinite limit)
Suppose f is defined for all x near a. If f(x) grows arbitrarily
large for all x sufficiently close (but not equal) to a, we write

liin f(z) =00

and say the limit of f(z) as = approaches « is infinity.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4
¥i - ™
- Sz large
1 and positive
[} —
1
1
1
1
1
1
1
1
1
1
1
- i - >
o i b 3

.
x approaches a
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Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

Definition (negatively infinite limit)
Suppose f is defined for all x near a. If f(z) is negative and
grows arbitrarily large in magnitude for all = sufficiently close
(but not equal) to a, we write

lim f(z) = —oo

and say the limit of f(z) as = approaches « is negative
infinity.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1
Week 2
Week 3
Week 4

2.4 Infinite Limits
2.5 Limits at Infinity

Yi

-

3
B
]

L

f)large
Nand negative )

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

The definitions work for one-sided limits, too.

Exercise
1

Using a graph and a table of values, given f(x) = P determine:

I
(@) lim f(z)
(b) lim f(x)

rz—0~

I
(c) lim f(z)
(d) lim f(x)

r—1— )

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

Wed 27 Jan

@ GET YOUR CLICKER. Starting next week, no attendance sheet,
clickers only.

@ There is no Blackboard for this course.

@ Stay on top of the MLP! First deadline is coming up. Don't wait till
the last minute.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

Definition of Vertical Asymptote

Definition
Suppose a function f satisfies at least one of the following:

o lim f(x) = %00,

T—ra

o lim f(z)==+o0
z—at

o lim f(x)=+o00
r—a~

Then the line x = a is called a vertical asymptote of f.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

Exercise
Given f(z) = x+1 , determine, analytically (meaning using
“number sense” and without a table or a graph),

(a) lim f(z)

z——11

(b) lim f(z)

z——1"

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
o & = = < v
Wheeler Cal | Spring 2016




Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

Summary Statements

Here is a common way you can summarize your solutions
involving limits:

“Since the numerator approaches (#) and the denominator
approaches 0, and is (positive/negative), and since (analyze
signs here), (insert limit problem)=(+o00 / — c0)."

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

Remember to check for factoring —
Exercise

(a) What is/are the vertical asymptotes of

_ 3?2 —48?

f(z) x+4

(b) What is 1im4f(x)? Does that correspond to your earlier

T——
answer?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

2.4 Book Problems
7-10, 15, 17-23, 31-34, 44-45

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

§2.5 Limits at Infinity
e Horiztonal Asymptotes
o Infinite Limits at Infinity
o Friday 29 January

e Algebraic and Transcendental Functions
o 25-29 January

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

2.5 Limits at Infinity

Limits at infinity determine what is called the end behavior of a function.
Exercise

(a) Evaluate the following functions at the points
x = £100, £1000, £10000;

4722 + 3z — 2 Ccos T
= — = —2 _—
J(@) x2 42 9() Jr

(b) What is your conjecture about lim, o f(2)? lim,— oo f(2)?
limg s oo g(x)? limg 00 g(x)?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

Horizontal Asymptotes

Definition
If f(x) becomes arbitrarily close to a finite number L for all sufficiently
large and positive x, then we write

lim f(x)=L.

Tr—00

The line y = L is a horizontal asymptote of f.

The limit at negative infinity, lim f(z) = M, is defined analogously
T—r—00

and in this case, the horizontal asymptote is y = M.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

Infinite Limits at Infinity

Question

Is it possible for a limit to be both an infinite limit and a limit at infinity?
(Yes.)

If f(x) becomes arbitrarily large as x becomes arbitrarily large, then we

write
zhﬁngo f(x) = .
(The limits lim f(z) = —oo, lim f(x) =00, and lim f(z) = —o0
r—00 r—r—00 r—r—00

are defined similarly.)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

Powers and Polynomials: Let n be a positive integer and let
p(z) be a polynomial.

@ n = even number: lim 2" = 0

r—+00
@ n = odd number: lim 2" = o0 and lim z" = —oc0
Tr—r00 Tr—r—00

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

@ (again, assuming n is positive)

. 1 .
lm — = lim z7"=0
r—too ™ T—+oo

@ For a polynomial, only look at the term with the highest exponent:

: o on
zglzltloo p(x) = zgrﬂrzloo (constant) - x

The constant is called the leading coefficient, Ic(p). The highest
exponent that appears in the polynomial is called the degree,

deg(p).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4
. N ~ plx) . _ .
Rational Functions: Suppose f(z) = ﬁ s a rational function.
q(x
@ If deg(p) < deg(q), i.e., the numerator has the smaller degree, then
lim z) =0
a;—>ioof( )

and y = 0 is a horizontal asymptote of f.

@ If deg(p) = deg(q), i.e., numerator and denominator have the same

degree, then
lim f(z) = Ic(p)

~le(g)
and y = :22’3 is a horizontal asymptote of f.

r—+too

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

@ If deg(p) > deg(q), (numerator has the bigger degree) then

wgriloof(x) =00 or —o0

and f has no horizontal asymptote.

@ Assuming that f(x) is in reduced form (p and ¢ share no common
factors), vertical asymptotes occur at the zeroes of q.

(This is why it is a good idea to check for factoring and cancelling
first!)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

When evaluating limits at infinity for rational functions, it is
not enough to use the previous rule to show the limit
analytically.

To evaluate these limits, we divide both numerator and
denominator by =™, where n is the degree of the polynomial in
the denominator.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



Week 2 2.4 Infinite Limits
2.5 Limits at Infinity

Fri 29 Jan

@ Today: You MUST sign in if your name is highlighted. Everyone
must click in, if possible.

@ GET YOUR CLICKER NOW. Starting next week, no attendance
sheet, clickers only.

@ There is no Blackboard for this course.

@ Stay on top of the MLP! First deadline is SUNDAY. Don't wait till
the last minute.

@ EXAM 1 is in two weeks, covers up to §3.1 (see the semester
schedule of material on the course webpage). You must attend your
own lecture on exam day.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

Exercise

Determine the end behavior of the following functions (in
other words, compute both limits, as x — 400, for each of
the functions):

x+1
1. f(x):—zxz_3
473 — 31
2 —
S v S
624 — 1
3. h(z) = ’

434322420+ 1

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.4 Infinite Limits
Week 3 2.5 Limits at Infinity
Week 4

Algebraic and Transcendental Functions

Example
Determine the end behavior of the following functions.

1 f ( ) 4z3
. f(z) =
223 4+ /926 + 1524

2. g(x) = cosx (trig)

(radical signs appear)

3. h(x) = e (exponential)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

Mon 1 Feb

e GET YOUR CLICKER NOW.

@ EXAM 1 is one week from Friday. Covers up to §3.1 (see
the semester schedule of material on the course webpage).
You must attend your own lecture on exam day.
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4

Exercise

What are the vertical and horizontal asymptotes of
2

f(@) = 55577

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4

2.5 Book Problems
9-14, 15-33 (odds), 41-49 (odds), 53-59 (odds), 67

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
o P = = = 9ac
Wheeler Cal | Spring 2016




Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4

e Continuity Rules

e Continuity on an Interval

e Wednesday 3 February

o Continuity of Functions with Roots

e Continuity of Transcendental Functions
o Intermediate Value Theorem (IVT)

o Friday 5 February

® Book Problems

e 1-5 February

§2.6 Continuity
e Continuity Checklist

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

§2.6 Continuity

Informally, a function f is “continuous at x = a" means for x-values
anywhere close enough to a the graph can be drawn without lifting a
pencil. In other words, no holes, breaks, asymptotes, etc.

Definition

A function f is continuous at a means

lim f(z) = f(a).

Tr—a

If fis not continuous at a, then a is a point of discontinuity.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

Continuity Checklist

In order to claim something is continuous, you must verify all three:

1. f(a) is defined (i.e., a is in the domain of f — no holes,
asymptotes).

2. lim f(z) exists. You must check both sides and make sure they
r—a
equal the same number.

3. lim f(z) = f(a) (i.e., the value of f equals the limit of f at a).
r—a

Question

What is an example of a function that satisfies this condition? J
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4

Example

@ Where are the points of discontinuity of
the function below?

@ Which aspects of the checklist fail?

g recall (Continuity Checklist):
¥ = by 1. function is defined

1 2. the two-sided limit
exists

3. 2.=1

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

Continuity Rules

If f and ¢ are continuous at a, then the following functions
are also continuous at a. Assume c is a constant and n > 0 is
an integer.

f+y

f—g

cf

fg

L, provided g(a) # 0

51

[f ()]

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

From the rules above, we can deduce:
1. Polynomials are continuous for all z = a.

2. Rational functions are continuous at all z = a except for
the points where the denominator is zero.

3. If g is continuous at a and f is continuous at g(a), then
the composite function f o g is continuous at a.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

Continuity on an Interval

Consider the cases where f is not defined past a certain point.
Definition

A function f is continuous from the left (or left-continuous) at a
means

lim f(z) = f(a);

r—a~

a function f is continuous from the right (or right-continuous) at a
means

lim f(z) = f(a).

z—at

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

Definition
A function f is continuous on an interval [ means it is
continuous at all points of I.

Notation: Intervals are usually written
[a,b], (a,b], [a,b), or (a,b).

When I contains its endpoints, “continuity on I" means
continuous from the right or left at the endpoints.
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

Wed 3 Feb

e GET YOUR CLICKER NOW. If you haven't gotten any
email from me, then your clicker should be working fine.

o EXAM 1 is one week from Friday. Covers up to §3.1 (see
the semester schedule of material on the course
webpage). You must attend your own lecture on exam
day. CEA: Register with the CEA office for a time on 12
Feb, as close to your normal lecture time as possible.

@ Look at old Wheeler exams to study.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4

Example
2 +4r+1 ifz<0
223 if x > 0.

1. Use the continuity checklist to show that f is not
continuous at 0.

Let f(z) =

Is f continuous from the left or right at 07

3. State the interval(s) of continuity.
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

Continuity of Functions with Roots

(assuming m and n are positive integers and - is in lowest terms)

o If m is odd, then [f(x)]= is continuous at all points at
which f is continuous.

o If m is even, then [f(z)]= is continuous at all points a at
which f is continuous and f(a) > 0.

Question

Where is f(z) = v/4 — 22 continuous?
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

Continuity of Transcendental Functions

Trig Functions: The basic trig functions are all continuous at all points
IN THEIR DOMAIN. Note there are points of discontinuity where the
functions are not defined — for example, tan x has asymptotes everywhere
that cosx = 0.

Exponential Functions: The exponential functions b and e” are
continuous on all points of their domains.

Inverse Functions: If a continuous function f has an inverse on an
interval I (meaning if z € I then f~1(y) passes the vertical line test),
then its inverse f~! is continuous on the interval .J, which is defined as
all the numbers f(z), given z is in I.
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Week 1
Week 2 2.6 Continuity

Week 3 2.7 Precise Definitions of Limits
Week 4

Intermediate Value Theorem (IVT)

Theorem (Intermediate Value Theorem)

Suppose | is continuous on the interval [a,b] and L is a
number satisfying

fla) <L < f(b) or f(b)<L< f(a).

Then there is at least one number ¢ € (a,b), i.e., a < c <D,
satisfying

f(e) = L.
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4

Example

Let f(z) = —2° — 42% + 2¢/x + 5. Use IVT to show that
f(z) = 0 has a solution in the interval (0, 3).
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

Fri 5 Feb

e GET YOUR CLICKER NOW. If you haven't gotten any
email from me, then your clicker should be working fine.

@ EXAM 1 is one week from today. Covers up to §3.1 (see
the semester schedule of material on the course
webpage). You must attend your own lecture on exam
day. CEA: Register with the CEA office for a time on 12
Feb, as close to your normal lecture time as possible.

@ Look at old Wheeler exams to study.
comp.uark.edu/~ashleykw
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Week 1
Week 2
Week 3
Week 4

2.6 Continuity
2.7 Precise Definitions of Limits

Exercise

Which of the following functions is continuous for all real

values of z7?

—~

>

~—

=

&
|

22

T 2z4+1

312 -2
S5x

I

5x
841
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4

2.6 Book Problems
9-25 (odds), 35-45 (odds), 59, 61, 63, 83, 85
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4

§2.7 Precise Definitions of Limits
e cand§
® Seeing es and s on a Graph

e 1_5 February e Finding a Symmetric Interval
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

§2.7 Precise Definitions of Limits

So far in our dealings with limits, we have used informal terms
such as “sufficiently close” and “arbitrarily large”. Now we will
formalize what these terms mean mathematically.

Recall: |f(z) — L| and |z — al refer to the distances between f(z)
and L and between z and a.

Also, recall that when we worked informally with limits, we wanted
x to approach a, but not necessarily equal a. Likewise, we wanted
f to get arbitrarily close to L, but not necessarily equal L.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4

Definition
Assume that f(z) exists for all z in some open interval (open means:

neither of the endpoints not included) containing a, except possibly at a.
“The limit of f(z) as = approaches a is L”, i.e.,

lim f(z) =L,

r—a

means for any ¢ > 0 there exists § > 0 such that

|f(z) — L] <e¢ whenever 0 < |z —al<§é.

Question
Why 0 < |z — al but not for |f(z) — L|?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

€ and ¢

When we worked informally with limits, we saw f(x) get closer and
closer to L as x got closer and closer to a.

Question

If we want the distance between f(x) and L to be less than 1, how
close does = have to be to a? What if we want |f(x) — L| < 0.57
0.57 0.17 0.017
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4
Seeing es and ds on a Graph
Example
¥ Using the graph, for each € > 0,

determine a value of 6 > 0 to satisfy
the statement

|f(z) — 5] < e whenever

o 0<|z—3|<é.
7 (a) e=1

r (b) €=0.5

1] L - L . L x
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4

Seeing es and ds on a Graph, cont.

When € = 1:

¥
¥ . I
T T T T o P
el LI LI T LI L LT [ i .
- r=rx
5 y=1() -3 <1. 5 _E flx) -5 <1
4 192l O L O
4 L~
3 ;fgi
R
2 2k
RS
1 i
[ 0<lx-3<2
R . ol I .
0 1 2 3 4 3 6 L] 1 2 3 4 3 6
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Seeing es and ds on

When ¢ = 0.5:

¥ y
i
i
6 ]
i) T i
= : = :
sp ¥ |fix) = 5] <03 5 V1) -5l <03
4 4
3 3
'
!
'
2 2 '
f
!
1 1 1 +
D=|x-3[<1
° x 0 i . i x
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

The es and ds give a way to visualize computing the limit, and
prove it exists. As the es get smaller and smaller, we want
there to always be a 4. In this example,

lim f(z) = 5.

r—3

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4
Exercise
Y4 Using the graph, for each € > 0, determine
s+ . a value of § > 0 to satisfy the statement

|f(xz) —4] < e whenever
0<|z—2<é.

b e
=
-

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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2.6 Continuity
Week 3 2.7 Precise Definitions of Limits

Finding a Symmetric Interval

Question

When finding an interval (a — §,a + §) around the point a,
what happens if you compute two different ds?

Answer: To obtain a symmetric interval around a, use the
smaller of the two Js as your distance around a.
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Week 1

Week 2 2.6 Continuity
Week 3 2.7 Precise Definitions of Limits
Week 4
Exercise
Y The graph of f(x) shows
6 T lim f(z) = 3.
r—2

For e = 1, find the corresponding value
of § > 0 so that

|f(xz) — 3| < e whenever
0<|z—2|<é.

.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.1 Introducing the Derivative
Exam #1 Review

Week 4

Mon 8 Feb

@ EXAM 1 on Friday.

o Covers up to §3.1 (see the semester schedule of material on
the course webpage).

@ You must attend your own lecture on exam day.

o CEA: Register with the CEA office for a time on 12 Feb, as
close to your normal lecture time as possible.

o Look at old Wheeler exams to study.
comp.uark.edu/~ashleykw

@ Also look at Quiz and Drill solutions posted in MLP.

@ Do the book problems. Go to office hours or Calculus Corner
to get feedback.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.1 Introducing the Derivative
Exam #1 Review
Week 4

Mon 8 Feb (cont.)

@ Quizzes:
e Include drill instructor and time.
e Don't turn in the Quiz sheet with your work.

e No quiz again until next week.
o Drill Exercise Tues 16 Feb and Quiz 4 Thurs 18 Feb.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review

Week 4

Mon 8 Feb (cont.)

@ Announcement:
A student in this class requires a note-taker. If you are willing to
upload your notes and plan to attend class on a REGULAR basis,
please sign up via the CEA Online Services on the Center for
Educational Access (CEA) website http://cea.uark.edu. On the
CEA Online Services login screen, click on “Sign Up as a
Note-taker”. At the end of the semester you will receive verification
of 48 community service hours OR a $50 gift card for providing
class notes. All interested students are encouraged to sign up;
preference may be given to volunteers seeking community service in
an effort engage U of A students in community service
opportunities. Please contact the Center for Educational Access at
ceanotes@uark.edu if you have any questions.
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

Exercise

Let f(z) = 2> — 4. For e = 1, find a value for § > 0 so that

|f(z) —12] <€ whenever 0 < |z —4| <.

In this example, lim,_,4 f(z) = 12.
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

2.7 Book Problems
1-7, 9-18

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

° 8-12 February

§3.1 Introducing the Derivative
o Derivative Defined as a Function
® Leibniz Notation
e Other Notation
e Wednesday 10 February
o Graphing the Derivative
o Differentiability vs. Continuity
® Book Problems

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.1 Introducing the Derivative
Exam #1 Review

Week 4

§3.1 Introducing the Derivative

Recall from Ch 2: We said that the slope of the tangent line
at a point is the limit of the slopes of the secant lines as the
points get closer and closer.

f(x) — f(a)

T —a

@ slope of secant line: (average rate of
change)

W (instantaneous rate

@ slope of tangent line: lim,_,,
of change)
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4
¥
A
. fx)-fila)
My =My, ————
xX—-a
fx)-fla)
Mgz =

x—-a

f) SR A

flayf---

o/la x .
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

Exercise

Use the relationship between secant lines and tangent lines,
specifically the slope of the tangent line, to find the equation
of a line tangent to the curve f(z) = 22 + 2z + 2 at the point
P =(1,5).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.1 Introducing the Derivative
Exam #1 Review
Week 4

In the preceding exercise, we considered two points
P=(af(@) and Q= (r,f(x))

that were getting closer and closer together.

Instead of looking at the points approaching one another, we
can also view this as the distance h between the points
approaching 0. For

P=(a,f(a)) and Q= (a+h, fla+h))),

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

@ slope of secant line:

fla+h)—fla) _ flath)—fla)
(a+h)—a h

@ slope of tangent line:

lim
h—0

fla+h) — f(a)
h
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4
¥
A / /
+h) -
i <ty LETNS@
i ;
_fla+h)-fia)
B A
/
flath) o

fla+h)~f(a)
fla)---

8]

I
/ ' a a+h
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

Exercise

Find the equation of a line tangent to the curve
f(z) = 2% + 22 + 2 at the point P = (2,10).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.1 Introducing the Derivative
Exam #1 Review

Week 4

Derivative Defined as a Function

The slope of the tangent line for the function f is itself a function of =
(in other words, there is an expression where we can plug in any value
x = a and get the derivative at that point), called the derivative of f.

Definition
The derivative of f is the function

fe) — g L) =)

h—0 h ’

provided the limit exists. If f'(x) exists, we say f is differentiable at x.
If f is differentiable at every point of an open interval I, we say that f is
differentiable on I.

v
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

Exercise

Use the definition of the derivative to find the derivative of the
function f(x) = 2 + 2x + 2.
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3.1 Introducing the Derivative
Exam #1 Review
Week 4

Leibniz Notation

A standard notation for change involves the Greek letter A.

flx+h) = fl)  [flat+Ar) - [flz) Ay

h Ax Ax’

Apply the limit:
oy o flat+Ar)—flx) . Ay dy
fiz) = Jimg Ax =AM R T 0
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3.1 Introducing the Derivative
Exam #1 Review

Week 4

Other Notation

The following are alternative ways of writing f/(z) (i.e., the
derivative as a function of z):

dy

o o g @) Du(f(2)) y(2)

The following are ways to notate the derivative of f evaluated
at r = a:

a
dz

dy
dx

r=a r=a
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3.1 Introducing the Derivative
Exam #1 Review

Week 4

Wed 10 Feb

@ EXAM 1 on Friday.

o Covers up to §3.1 (see the semester schedule of material on
the course webpage).

@ You must attend your own lecture on exam day.

o CEA: Register with the CEA office for a time on 12 Feb, as
close to your normal lecture time as possible.

o Look at old Wheeler exams to study.
comp.uark.edu/~ashleykw

@ Also look at Quiz and Drill solutions posted in MLP.

@ Do the book problems. Go to office hours or Calculus Corner
to get feedback.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.1 Introducing the Derivative
Exam #1 Review
Week 4

Wed 10 Feb (cont.)

@ Quizzes:
Include drill instructor and time.
Don't turn in the Quiz sheet with your work.

No quiz again until next week.
Drill Exercise Tues 16 Feb and Quiz 4 Thurs 18 Feb.
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review

Week 4

Wed 10 Feb (cont.)

@ Announcement:
A student in this class requires a note-taker. If you are willing to
upload your notes and plan to attend class on a REGULAR basis,
please sign up via the CEA Online Services on the Center for
Educational Access (CEA) website http://cea.uark.edu. On the
CEA Online Services login screen, click on “Sign Up as a
Note-taker”. At the end of the semester you will receive verification
of 48 community service hours OR a $50 gift card for providing
class notes. All interested students are encouraged to sign up;
preference may be given to volunteers seeking community service in
an effort engage U of A students in community service
opportunities. Please contact the Center for Educational Access at
ceanotes@uark.edu if you have any questions.
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

Question

Do the words “derive” and “differentiate” mean the same
thing?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.1 Introducing the Derivative
Exam #1 Review

Week 4

Graphing the Derivative

The graph of the derivative is the graph of the collection of
slopes of tangent lines of a graph. If you just have a graph

(without an equation for the graph), the best you can do is
approximate the graph of the derivative.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4
Example
Simple checklist:
¥
1. Note where f'(x) = 0. I

2. Note where f'(x) > 0.
(What does this look like?)

3. Note where f/(z) < 0.

(What does this look like?) S g S N S S
-0 -1t y=["(x)
S hasslope -1
frxy=-1
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3.1 Introducing the Derivative
Exam #1 Review

Week 4

Differentiability vs. Continuity

Key points about the relationship between differentiability and
continuity:
e If f is differentiable at a, then f is continuous at a.

e If f is not continuous at a, then f is not differentiable at
a.

@ f can be continuous at a, but not differentiable at a.
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Wheeler Cal | Spring 2016



Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

A function f is not differentiable at a if at least one of the
following conditions holds:

1. f is not continuous at a.

2. f has a corner at a.

Question
Why does this make f not differentiable? J

3. f has a vertical tangent at a.

Question
Why does this make f not differentiable? J
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3.1 Introducing the Derivative
Exam #1 Review
Week 4

3.1 Book Problems
9-45 (odds), 49-53 (odds) J

@ NOTE: You do not know any rules for differentiation yet
(e.g., Power Rule, Chain Rule, etc.) In this section, you
are strictly using the definition of the derivative and the
definition of slope of tangent lines we have derived.
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

o 8-12 February

Exam #1 Review
e Other Study Tips

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.1 Introducing the Derivative
Exam #1 Review
Week 4

Exam #1 Review

@ §2.1 The Idea of Limits

o Understand the relationship between average velocity &
instantaneous velocity, and secant and tangent lines

o Be able to compute average velocities and use the idea of a
limit to approximate instantaneous velocities

@ Be able to compute slopes of secant lines and use the idea of
a limit to approximate the slope of the tangent line

@ §2.2 Definitions of Limits

o Know the definition of a limit
o Be able to use a graph of a table to determine a limit
@ Know the relationship between one- and two-sided limits

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

Exam #1 Review (cont.)

@ §2.3 Techniques for Computing Limits

@ Know and be able to compute limits using analytical methods
(e.g., limit laws, additional techniques)

@ Know the Squeeze Theorem and be able to use it to
determine limits

Example

. .1
Evaluate lim z sin —.
x—0 x
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3.1 Introducing the Derivative
Exam #1 Review
Week 4

Exam #1 Review (cont.)

@ §2.4 Infinite Limits

o Be able to use a graph, a table, or analytical methods to
determine infinite limits

o Know the definition of a vertical asymptote and be able to
determine whether a function has vertical asymptotes

@ §2.5 Limits at Infinity

@ Be able to find limits at infinity and horizontal asymptotes
@ Know how to compute the limits at infinity of rational
functions
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

Exam #1 Review (cont.)

Example

Determine the end behavior of f(z). If there is a horizontal asymptote,
then say so. Next, identify any vertical asymptotes. If x = a is a vertical
asymptote, then evaluate lim f(z) and lim f(x).

r—at T—a~

B 223 + 1022 + 122
B 3 + 22

f(x)
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3.1 Introducing the Derivative
Exam #1 Review
Week 4

Exam #1 Review (cont.)

@ §2.6 Continuity

@ Know the definition of continuity and be able to apply the
continuity checklist

o Be able to determine the continuity of a function (including
those with roots) on an interval

o Be able to apply the Intermediate Value Theorem to a
function
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

Exam #1 Review (cont.)

Example
Determine the value for a that will make f(z) continuous.

2
43242 T # -1

fla)=1 =

a r=—1

Example

Show that f(z) = 2 has a solution on the interval (—1,1), with

fz) =22 + 2.
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3.1 Introducing the Derivative
Exam #1 Review

Exam #1 Review (cont.)

Exercise
What value of & makes

continuous everywhere?
v

@ §$2.7 Precise Definition of Limits
@ Understand the §, € relationship for limits
o Be able to use a graph or analytical methods to find a value
for § > 0 given an € > 0 (including finding symmetric
intervals)
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Wheeler Cal | Spring 2016



Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

Exam #1 Review (cont.)

Example
i Use the graph to find the appropriate §.
(a) |g(z) — 2| < § whenever
e 0<|z—3]<4d
/_\ (b) |g(z) — 1] < 2 whenever
O<|z—-2<$¢

In this example, the two-sided limits at =1 and = 2 do not
exist.
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3.1 Introducing the Derivative
Exam #1 Review
Week 4

Exam #1 Review (cont.)

@ §3.1 Introducing the Derivative

@ Know the definition of a derivative and be able to use this
definition to calculate the derivative of a given function

o Be able to determine the equation of a line tangent to the
graph of a function at a given point

o Know the 3 conditions for when a function is not
differentiable at a point, and why these three conditions make
a function not differentiable at the given point
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Week 1

Week 2 3.1 Introducing the Derivative
Week 3 Exam #1 Review
Week 4

Exam #1 Review (cont.)

Example

(a) Use the limit definition of the derivative to find an equation for the
line tangent to f(x) at a, where

(b) Using the same f(x) from part (a), find a formula for f/(z) (using
the limit definition).

(c) Plug —5 into your answer for (b) and make sure it matches your
answer for (a).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



3.1 Introducing the Derivative
Exam #1 Review
Week 4

Other Study Tips

@ Brush up on algebra, especially radicals.

@ When in doubt, show steps. Defer to class notes and old exams to
get an idea of what's expected.

@ You will be punished for wrong notation; e.g., the limit symbol.

@ Read the question! Several students always lose points because
they didn't answer the question or they didn't follow directions.

@ Do the book problems.

@ Budget your time. You don't have to do the problems in order. Do
the easier ones first.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Part 2. Derivatives

15-19 February

e Monday 15 February
§3.2 Graphing the Derivative

o Book Problems

§3.3 Rules of Differentiation
o Constant Functions
o Power Rule
e Constant Multiple Rule
o Sum Rule
o Exponential Functions
o Wednesday 17 February
o Higher-Order Derivatives
® Book Problems

§3.4 The Product and Quotient Rules
o Product Rule
o Derivation of the Product Rule
o Derivation of the Quotient Rule
o Quotient Rule

22-26 February
e Monday 22 February

o Derivative of e*?
The basgfﬂéﬁégeéﬁ@hgﬁggone by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

o Book Problems
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Part 2. Derivatives (cont.)

o Wed 24 February

§3.5 Derivatives of Trigonometric Functions
® Derivatives of Sine and Cosine Functions
e Trig Identities You Should Know
e Derivatives of Other Trig Functions
o Higher-Order Trig Derivatives
® Book Problems

§3.6 Derivatives as Rates of Change
e Position and Velocity
o Speed and Acceleration
o Growth Models
e Average and Marginal Cost
® Book Problems

29 Feb — 4 March

o Wednesday 2 March
§3.7 The Chain Rule

e Version 1 of the Chain Rule
o Guidelines for Using the Chain Rule
@ Version 2 of the Chain Rule

o Chain Rule for Powers
The basgf@éhﬁ&ﬁjéﬁm&f@r& v1Bre FhaneeibRéngman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.

o Book Problems
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Week 5
Week 6
Week 7

Part 2. Derivatives (cont.)

§3.8 Implicit Differentiation
o Higher Order Derivatives
o Power Rule for Rational Exponents
® Book Problems

Exam #2 Review
o Running Out of Time on the Exam Plus other Study Tips
e Other Study Tips

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Mon 15 Feb

@ Expect Exam back on Thursday.

@ Quizzes:
@ Include drill instructor and time.

@ Don't turn in the Quiz sheet with your work.
o Dirill Exercise Tues 16 Feb and Quiz 4 Thurs 18 Feb.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Mon 15 Feb (cont.)

@ Announcement:
A student in this class requires a note-taker. If you are willing to
upload your notes and plan to attend class on a REGULAR basis,
please sign up via the CEA Online Services on the Center for
Educational Access (CEA) website http://cea.uark.edu. On the
CEA Online Services login screen, click on “Sign Up as a
Note-taker”. At the end of the semester you will receive verification
of 48 community service hours OR a $50 gift card for providing
class notes. All interested students are encouraged to sign up;
preference may be given to volunteers seeking community service in
an effort engage U of A students in community service
opportunities. Please contact the Center for Educational Access at
ceanotes@uark.edu if you have any questions.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

© 15-19 February

§3.2 Graphing the Derivative

® Book Problems

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

§3.2 Graphing the Derivative

Recall: The graph of the derivative is essentially the graph of
the collection of slopes of the tangent lines of a graph. If you
just have a graph (without an equation for the graph), the
best you can do is approximate the graph of the derivative.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Simple Checklist:
1. Note where f'(x) = 0.
2. Note where f'(x) > 0.

Question
What does this look like? J

3. Note where f'(z) < 0.

Question
What does this look like? J

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Example
Given the graph of g(z), sketch the graph of ¢'(z).

.\'1

¥ = glx)

L

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules
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slopes  slopes  slopes  slopes

1€-] =)<se-| —l€x<) a3l

v

o

i

]

+ - x
-3 - 3 '

]

~s0g')=0at

>0 g <0 g>0 gin<0

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.

= & - = = 9ae
Wheeler Cal | Spring 2016



Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Example (With Asymptopes)
Given the graph of f(z), sketch the graph of f'(z).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5
Week 6
Week 7

3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Recall the relationship between differentiability and continuity.

Exercise
If a function g is not continuous at = a, then g
A. must be undefined at 2 = a.

is not differentiable at z = a.

all of the above.

B
C. has an asymptote at x = a.
D
E. A.and B. only.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

3.2 Book Problems
5-14

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

e Book Problems

° 15-19 February

§3.3 Rules of Differentiation
o Constant Functions
o Power Rule
e Constant Multiple Rule
® Sum Rule
e Exponential Functions
o Wednesday 17 February
o Higher-Order Derivatives

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

§3.3 Rules of Differentiation

Recall the definition of the derivative:

o) — i D) = @)

h—0 h

(as a function of z, i.e., a formula).
And, for any particular point a, we have

) — i 1) = 1)

rT—ra Tr— a

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

Constant Functions

The constant function f(z) = c¢ is a horizontal line with a slope of 0 at
every point. This is consistent with the definition of the derivative:

oy @ h) = f(x)
() hmT

h—0
. c—c¢
= lim
h—0 h
= lim 0 = 0.
h—0

Therefore, for constant functions, %c =0.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

Power Rule

Fact: For any positive integer n, we can factor
" —a" = (x—a) (@ + 2" a4+ wad" P+ a" ).
For example, when n = 2, we get
v —a® = (x —a)(x +a),

which is the difference of squares formula.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Power Rule, cont.

Suppose f(x) = ™ where n is a positive integer. Then at a point a,

f(z) = f(a) " —a"

/ 1 i
f (a> il—rg r—a ml—% Tr—a
— lim (z—a)(z" ' +2" 20+ +xa" 2 +a")
r—a T —a

(@t +a" 2 a+--ta-a"?+a") =na""

Using the formula for the derivative as a function of x, one can show

%(7‘") — nxnfl_

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

Constant Multiple Rule

Consider a function of the form cf(x), where ¢ is a constant.
Just like with limits, we can factor out the constant:

d . cf(e+h)—cf(x)
Jplef ()] = lim -

h—0 h h—0

= cf'(z)

Therefore, L(cf(x)] = cf'(x).

flz+h) - f(x)
h

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

Sum Rule

Sums of functions also behave under the same limit laws when
we differentiate:

[f(x+h)+g(z+h)] - [f(2) +9(x)]

() + g(a)) = lim

h—0 h
o @+ h) = f@)] | (gl +h) = g(x)]
= h + 7
i F@ M = J@) gl h) — gla)
h—0 h h—0
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Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

So if f and g are differentiable at x,

L (@) + 9@)] = /(@) + ().

The Sum Rule can be generalized for more than two functions
to include n functions.

Note: Using the Sum Rule and the Constant Multiple Rule
produces the Difference Rule:

(@)~ glo)] = ') ~ g (@),

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Exercise

Using the differentiation rules we have discussed, calculate the
derivatives of the following functions. Note which rule(s) you
are using.

1. y=a°

2.y =4x® — 22°

3. y = —1500

4. y=3x3—2x+4

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

Exponential Functions

Let f(x) = b", where b > 0, b # 1. To differentiate at 0, we write

_ xr 10 T
£(0) = lim fz) = f(0) _ lim il lim u
x—0 xr — 0 x—0 xT x—0 X

It is not obvious what this limit should be. However, consider the cases
b =2 and b = 3. By constructing a table of values, we can see that

lim -1 0.693 and lim o1 1.099.
x—0 x x—0 x

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

So, f(0) < 1 when b =2 and f/(0) > 1 when b = 3. As it turns out,
there is a particular number b, with 2 < b < 3, whose graph has a
tangent line with slope 1 at = 0. In other words, such a number b has

the property that
b =1
lim —— = 1.
x—0 X

Question
What number is it? J

Answer: This number is e = 2.718281828459 ... (known as the Euler
number). The function f(z) = e” is called the natural exponential
function.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Now, using lir% < =1, we can find the formula for - (e”):
x—

xT

d et th
(") = li
g €)= fim

h
= lim
h—0 h

= lim
h—0

=% [ lim

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

Wed 17 Feb

@ Expect Exam back on Thursday. Feedback on Friday. Scores —
MLP?

@ Instructions for when you get your exam back:

o Look over your test, but don't write on it.

o If you find discrepancies on points or grading, write your
grievances on a separate sheet of paper.

@ Return that paper with your exam to your drill instructor by
the end of drill.

@ Once you leave the room with your exam you lose this
opportunity.

e This is the only way you can get points back on the exam.
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Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

Wed 17 Feb (cont.)

@ MIDTERM in less than three weeks.

e Tuesday 8 March 6-7:30p

e If you have legitimate conflict, i.e., anything that is also
scheduled in ISIS, | need to know now. If you are not
sure if it conflicts with a course, please have that
instructor contact me ASAP.

e Morning Section: Walker rm 124
Afternoon Section: Walker rm 218

@ Later this month: Sub on Friday 26 Feb and Monday 29 Feb.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Exercise

(a) Find the slope of the line tangent to the curve
f(x) = 2® — 42 — 4 at the point (2, —4).

(b) Where does this curve have a horizontal tangent?
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Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

Higher-Order Derivatives

If we can write the derivative of f as a function of z, then we
can take its derivative, too. The derivative of the derivative is
called the second derivative of f, and is denoted f”.

In general, we can differentiate f as often as needed. If we do
it n times, the nth derivative of f is
_drf o d

— _ [f(n-1)
dzm  dx D)),

f(x)
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

3.3 Book Problems
9-48 (every 3rd problem), 51-53, 58-60

@ For these problems, use only the rules we have derived so
far.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

§3.4 The Product and Quotient Rules
° 15-19 February o Product Rule

o Derivation of the Product Rule
e Derivation of the Quotient Rule
e Quotient Rule

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

§3.4 The Product and Quotient Rules

Issue: Derivatives of products and quotients do NOT behave
like they do for limits.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

As an example, consider f(z) = x? and g(z) = ®. We can try to
differentiate their product in two ways:

L@@ = - (%)
= 5z?
o f/a)y(x) = (27)(327)
= 62°

Question J

Which answer is the correct one?
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Product Rule

If f and g are any two functions that are differentiable at x, then

d

[ @)g(@)] = ' @)g(@) + ¢ (@)f (2).

In the example from the previous slide, we have

i 2 B_i 2 3 2 i 3
ot 2l = (@) @)+t (o)
= (2z) - (2°) +2? - (32?)
= 2z% 4 32*
= 5z
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Derivation of the Product Rule

4 )g(e)] = tim TEE I+ D) — f@)g()

dx h—0 h

— o (Lt Rise b St 4 1)+ fola 1) = el

h—0 h
v (fla+h)gl@+h) — f(x)g(z+h)
= Jim, ( h )
. f(@)g(z +h) = f(z)g(z)
+ (;1136 h )
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Derivation of the Product Rule (cont.)

=0 h—0 h

= }Lim (g(w+h)w> + <lim f(w)w)

=g(2)f'(x) + f(x)g'(z)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Exercise

Use the product rule to find the derivative of the function
(22 + 3z)(2z — 1).

A. 2(2x +3)

B. 622+ 10z —3

C. 223+ 522 —3x

D. 2z(x+3)+x(2z—1)
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Week 5 3.2 Graphing the Derivative

Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules
Derivation of Quotient Rule
Question
_ [f(=) o d
Let ¢(z) = Sy - What is +-q(x)?

Answer: We can write f(z) = ¢(x)g(z) and then use the Product Rule:

f(x) = ¢ (x)g(x) + g'(x)q(x)

and now solve for ¢'(z):
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Then, to get rid of ¢(z), plug in Jg”(_w;:

(x

g9(x) - g(z)
4 (f(x)) _ [(@)g(x) —g'(x) f(x)
dx \ g(x) g(z)2

“LO-D-HI minus HI-D-LO over LO squared”
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Week 5 3.2 Graphing the Derivative
3.3 Rules of Differentiation
3.4 The Product and Quotient Rules

Quotient Rule

Just as with the product rule, the derivative of a quotient is
not a quotient of derivatives, i.e.

i [

Here is the correct rule, the Quotient Rule:

a [f(fv)} _ ['(@)g(x) = g'(x) f(x)
dr | g(x) lg(x)]? '
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Week 5 3.2 Graphing the Derivative
Week 6 3.3 Rules of Differentiation
Week 7 3.4 The Product and Quotient Rules

Exercise
Use the Quotient Rule to find the derivative of
43 4+ 22 — 3
41 ’

Exercise
Find the slope of the tangent line to the curve

_2a7—3

(L‘——|—]_ at the point (4, 1)

f(z)
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Week 5 3.5 Derivatives of Trigonometric Functions
Week 6 2.6 Daitveri R: f Ch
o .6 Derivatives as Rates o ange

Mon 22 Feb

@ Exam 1 Feedback

Problem
Total 1 2 3(a) (b) (e) (d) 4 5(a) (b) (e) 6(a) (b) (e) 7
out of 75 10 10 3 3 3 3 10 3 3

8
3 5 5 3/5|5
Median -> 48.0 8 7 2z 0

1 2| 8 2 . § 1 5 1 14

w

Exam 1 Raw Distribution

&

El (count)

Scors
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Week 6 3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Mon 22 Feb (cont.)

@ MIDTERM
e Tuesday 8 March 6-7:30p
o If you have legitimate conflict, i.e., anything that is also
scheduled in ISIS, | need to know now. If you are not
sure if it conflicts with a course, please have that
instructor contact me ASAP.
o Cumulative. Covers up to §3.9
e Morning Section: Walker rm 124
Afternoon Section: Walker rm 218
@ Sub on Friday 26 Feb and Monday 29 Feb.
@ Exam 2: Friday 4 March. Covers up to §3.8.
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Week 5 N . . .
Week 6 3.5 Derivatives of Trigonometric Functions

Week 7 3.6 Derivatives as Rates of Change

The Quotient Rule also allows us to extend the Power Rule to
negative numbers — if n is any integer, then

4 [z"] = nx
dx B

n—1

Question J

How?
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Exercise

If f(z) = &2 find f'(2).
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Derivative of eF*

For any real number £k,

i kx\ __ kx
da:(e )—ke .

Exercise
What is the derivative of z2e3%?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.

o = = = E 9Oace
Wheeler Cal | Spring 2016



3.5 Derivatives of Trigonometric Functions

Week 6 3.6 Derivatives as Rates of Change

Rates of Change

The derivative provides information about the instantaneous rate of
change of the function being differentiated (compare to the limit of the
slopes of the secant lines from §2.1).

For example, suppose that the population of a culture can be modeled by
the function p(t). We can find the instantaneous growth rate of the
population at any time ¢ > 0 by computing p’(t) as well as the
steady-state population (also called the carrying capacity of the
population). The steady-state population equals

lim p(t).

t—o00
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

3.4 Book Problems
9-49 (every 3rd problem), 57, 59, 63, 75-79 (odds)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.5 Derivatives of Trigonometric Functions

Week 6 3.6 Derivatives as Rates of Change

Wed 24 Feb

@ Exam 1: see the course webpage for the curve

e MIDTERM

o Tuesday 8 March 6-7:30p

o If you have legitimate conflict, i.e., anything that is also
scheduled in ISIS, | need to know now. If you are not sure if it
conflicts with a course, please have that instructor contact me
ASAP.

e Cumulative. Covers up to §3.9
Morning Section: Walker rm 124
Afternoon Section: Walker rm 218

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

Wed 24 Feb (cont.)

@ Sub on Friday 26 Feb and Monday 29 Feb.
@ Possible sub on Wednesday 2 Mar.
@ Exam 2: Friday 4 March. Covers up to §3.8.

@ Quizzes: Only some of the quiz problems are graded now.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

o Trig Identities You Should Know

o Derivatives of Other Trig Functions
o Higher-Order Trig Derivatives

® Book Problems

© 22-26 February

§3.5 Derivatives of Trigonometric Functions
® Derivatives of Sine and Cosine Functions

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

3.5 Derivatives of Trigonometric Functions

Trig functions are commonly used to model cyclic or periodic
behavior in everyday settings. Therefore it is important to
know how these functions change across time.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

Fact: Derivative formulas for sine and cosine can be derived
using the following limits:

o lim, o *2* sine _ ]

° hn,lm_>0 cosx—1 __ =0

(We will prove these limits in Chapter 4.)
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Exercise

. sin9x . sin9x
Evaluate lim —— and lim ——.
=0 I z—0 SIN DT

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Derivatives of Sine and Cosine Functions

Using the previous limits and the definition of the derivative,
we obtain

i(sin x) =cosz

dx

—(cosx) = —sinx

dx

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Examining the graphs of sine and cosine illustrate the
relationship between the functions and their derivatives.

WAL AL
T

Horizontal tangent lines Horizontal tangent lines
for fix) = sin x oceur at for flx) = cos x occur at
¥ the zeros of /'(x) = cos x. Y 4| the zeros of f*(x) = —sin x
I3 1
\ F0) = cosx /\f’(x}s =sin
P P I =
0 \] ' 6 X [) \A 6w x
-1 1+ ’

@ (b}
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Trig Identities You Should Know

@ sin?z +cos?x=1 @ tany = B
CcCOos T
@ tan’z + 1 =sec’x @ cotp = £
sin T
@ sin2x = 2sinxcosx @ cotx = g L
anxT
@ cos2z =1-2sin’x @ secy = —L
cos T
_ 1
o COS2QL‘: # @ cscx = sinx
° sin2x= 170552z
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Derivatives of Other Trig functions

d(tn )= d (sinz
dx anwe "~ dx \cosz

coszcosx — (—sinzx)sinx

cos? x
2 )
cos“x 4+ sin“ x
cos? x
= —2 = SeC2 X
Ccos“ T

So A (tanz) = sec? .
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Week 5 N q . .
Week 6 3.5 Derivatives of Trigonometric Functions

Week 7 3.6 Derivatives as Rates of Change

By using trig identities and the Quotient Rule, we obtain

d d 1

—(cscx) = — = —cscxrcotw
dx( ) dr \sinz

( ) d 1 ;

secxr) = — =gsecrtanx
dx dx \ cosz

d 1

—(cotx) = — = —csc’x
dx( ) dr \ tanzx
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Exercise
Compute the derivative of the following functions:

- tanx
 1+tanz

()

g(x) =sinzcosx

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Exercise

Use the difference and product rules to find the derivative of
the function y = cosx — xsinx.

A. —sinz + xcosx
B. zcosz

C. —2sinxz —xzcosz
D. zcosx —2sinx

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 6 3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Higher-Order Trig Derivatives

There is a cyclic relationship between the higher order
derivatives of sinx and cos x:

—=sinx g = COST
’

= COsST g = —sinz

= —COosSZ G)(z) = sinx

() ()
() ()
f"(z) = —sinx g"(x) = —cosw
() 97 (x)
() = sinz g (x)

= COST
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

3.5 Book Problems
7-47 (odds), 57, 59, 61

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

§3.6 Derivatives as Rates of Change
e Position and Velocity

® Speed and Acceleration
e 22-26 February o Growth Models

e Average and Marginal Cost
e Book Problems

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

3.6 Derivatives as Rates of Change

Why do we need derivatives in real life?

Question J

We look at four areas where the derivative assists us with
determining the rate of change in various contexts.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

Position and Velocity

Suppose an object moves along a straight line and its location
at time t is given by the position function s = f(¢). The
displacement of the object between t =a and t = a + At is

As = f(a+ At) — f(a).

Here At represents how much time has elapsed.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 6 3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

We now define average velocity as

As  fla+Al) — f(a)
At At '

Recall that the limit of the average velocities as the time
interval approaches 0 was the instantaneous velocity (which we
denote here by v). Therefore, the instantaneous velocity at a is

v(a) _ AI?BO f(a’_'_ AAtl)f — f(a) _ f’(a).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

Speed and Acceleration

In mathematics, speed and velocity are related but not the
same — if the velocity of an object at any time ¢ is given by
v(t), then the speed of the object at any time ¢ is given by

()] = (1)1

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

By definition, acceleration (denoted by a) is the instantaneous
rate of change of the velocity of an object at time t. Therefore,

and since velocity was the derivative of the position function
s = f(t), then

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

Summary: Given the position function s = f(t), the velocity
at time ¢ is the first derivative, the speed at time ¢ is the
absolute value of the first derivative, and the acceleration at
time t is the second derivative.
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Week 5 3.5 Derivatives of Trigonometric Functions

wfft g 3.6 Derivatives as Rates of Change

Question
Given the position function s = f(¢) of an object launched
into the air, how would you know:

@ The highest point the object reaches?
@ How long it takes to hit the ground?
@ The speed at which the object hits the ground?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Exercise

A rock is dropped off a bridge and its distance s (in feet) from
the bridge after ¢ seconds is s(t) = 16t + 4¢. At t = 2 what
are, respectively, the velocity of the rock and the acceleration
of the rock?

A. 64 ft/s; 16 ft/s
B. 68 ft/s; 32 ft/s
C. 64 ft/s; 32 ft/s?
D. 68 ft/s; 16 ft/s?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

Growth Models

Suppose p = f(t) is a function of the growth of some quantity
of interest. The average growth rate of p between times t = a
and a later time ¢t = a + At is the change in p divided by the
elapsed time At:

Ap _ fla+ At) — f(a)
At At '

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

As At approaches 0, the average growth rate approaches the
derivative %, which is the instantaneous growth rate (or just
simply the growth rate). Therefore,

dp _ fla+At) — fa) _ lim Ap
dt  At=0 At A0 At
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

Exercise

The population of the state of Georgia (in thousands) from
1995 (¢t = 0) to 2005 (¢ = 10) is modeled by the polynomial

p(t) = —0.27t% + 101t + 7055.

(a) What was the average growth rate from 1995 to 20057
(b) What was the growth rate for Georgia in 19977

(c) What can you say about the population growth rate in
Georgia between 1995 and 20057

v
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

Average and Marginal Cost

Suppose a company produces a large amount of a particular
quantity. Associated with manufacturing the quantity is a
cost function C(x) that gives the cost of manufacturing x
items. This cost may include a fixed cost to get started as
well as a unit cost (or variable cost) in producing one item.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.5 Derivatives of Trigonometric Functions

Wls @ 3.6 Derivatives as Rates of Change

If a company produces x items at a cost of C'(x), then the
average cost is ——. This average cost indicates the cost of
items already produced. Having produced x items, the cost of
producing another Az items is C'(z + Az) — C(z). So the
average cost of producing these extra Ax items is

AC Oz + Az) — C(x)
Ar Az '
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Week 6 3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

If we let Az approach 0, we have

. AC
Am Ay =@

which is called the marginal cost. The marginal cost is the
approximate cost to produce one additional item after
producing x items.

Note: In reality, we can't let Ax approach 0 because Ax
represents whole numbers of items.
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

Exercise
If the cost of producing x items is given by

C(z) = —0.042* + 100z + 800

for 0 < x <1000, find the average cost and marginal cost
functions. Also, determine the average and marginal cost
when x = 500. )
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Week 5
Week 6
Week 7

3.5 Derivatives of Trigonometric Functions
3.6 Derivatives as Rates of Change

3.6 Book Problems
9-19, 21-24, 30-33 (odds)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Wed 2 Mar

o Exam 2:
o Friday 4 Mar. Covers up to §3.8.
e Spring 2015 Practice Exam. Also look for quizzes on the

old webpages for more problems.

e For more problems study the evens in each of the
sections covered.

e Basic scientific calculator is allowed.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Wed 2 Mar (cont.)

o Midterm:

o Tuesday 8 March. Covers everything up to §3.9.
e Morning Section: Walker room 124
Afternoon Section: Walker room 218
You must take the test with your officially scheduled
section.
e Stay tuned for conflict resolutions. If you haven't
emailed me already regarding a conflict, do it NOW.
e Stay tuned for a study guide.
e Basic scientific calculator is allowed....? Stay tuned.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Wed 2 Mar (cont.)

@ Quiz 6 next Thurs. Only some of the quiz problems are
graded now. You are always welcome to my office for
feeback on your work.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

® Version 1 of the Chain Rule

o Guidelines for Using the Chain Rule
® Version 2 of the Chain Rule

e Chain Rule for Powers

o Composition of 3 or More Functions
® Book Problems

@ 29 Feb — 4 March

§3.7 The Chain Rule

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

§3.7 The Chain Rule

The rules up to now have not allowed us to differentiate composite
functions

fog(x) = flg(x)).

Example
If f(x) =27 and g(z) = 2z — 3, then f(g(z)) = (2 —3)7. To
differentiate we could mulitply the polynomial out... but in general we

should use a much more efficient strategy to emply to composition
functions.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Example

Suppose that Yvonne (y) can run twice as fast as Uma (u). Then write
d— 9

du — <

Suppose that Uma can run four times as fast as Xavier (z). So 4 = 4.

How much faster can Yvonne run than Xavier? In this case, we would
take both our rates and multiply them together:

dy du
.22 9.4 =28,
du dx

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Version 1 of the Chain Rule

If g is differentiable at z, and y = f(u) is differentiable at
u = g(z), then the composite function y = f(g(x)) is
differentiable at z, and its derivative can be expressed as

dy _dy du

dr  du dzx

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Guidelines for Using the Chain Rule

Assume the differentiable function y = f(g(x)) is given.
1. Identify the outer function f, the inner function g, and let u = g(x).

2. Replace g(z) by u to express y in terms of u:

y=fg9(z)) = y=f(u)

3. Calculate the product d—y . Z—Z
7y

to obtain %

4. Replace u by g(z) in 2.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Example

Use Version 1 of the Chain Rule to calculate £ for y = (522 + 112)%°

@ inner function: u = 522 + 11z

@ outer function: y = u?°

We have y = f(g(z)) = (5z? + 112)?°. Differentiate:

dy dy du

19
= g o = 2001 - (102 + 11)

=20(52% + 112)'? - (102 + 11)
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exercise

Use the first version of the Chain Rule to calculate j—g for

3z °

y= 4r + 2

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exercise

Use the first version of the Chain Rule to calculate g—g for

y = cos (br + 1).

A. y = —cos(br+1)-sin(br + 1)
B. ¢ = —bsin(bx +1)

C. y=>5cos(bx +1)—sin(bzr+1)
D. ¢y = —sin(bz +1)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Version 2 of the Chain Rule

Notice if y = f(u) and u = g(x), then y = f(u) = f(g(x)),
so we can also write:

dy _ dy du

dr du dz
= f'(u) - ¢'(2)
= f'(9(x)) - ¢'(x).
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Week 5 3.7 The Chain Rule

Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review
Example
Use Version 2 of the Chain Rule to calculate % for y = (To* + 22 + 5)9.J

@ inner function: g(z) = Tz* + 2z +5

@ outer function: f(u) = u®

Then
fl(u) =9u® = f'(g(x)) = 9(7a* + 22 +5)8
g (z) = 282° + 2.

Putting it together,
d
W _ plg(a)) g (a) = 9(7a* + 20+ 5 - (285° +2)
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exercise

Use Version 2 of the Chain Rule to calculate Z—z for

y = tan (5z° — T2® + 27).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Chain Rule for Powers

If g is differentiable for all z in the domain and n is an integer,

then ;
o | (9(@)" | =nlg(z))

n—1

-g'(x).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Chain Rule for Powers (cont.)

Example

d (1_690)4 =7

dz

Answer:

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Composition of 3 o

Example

Compute £ | \/(3z — 4)2 + 3

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Composition of 3 or More Functions (cont.)

Answer:
% Bz —4)2 + 390] - %((395 —4)2132) 2. % [(32 — 4)2 + 3a]
_ T _14)2 vl 2(3x — 4)%(33: —4) 43
= 2\/((3x _14)2 o - [2(3z —4) -3+ 3]
182 — 21

2/ (32 — )2 + 32)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

3.7 Book Problems
7-33 (odds), 38, 45-67 (odds)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

83.8 Implicit Differentiation
o Higher Order Derivatives
o Power Rule for Rational Exponents
® Book Problems

@ 29 Feb — 4 March

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

§3.8 Implicit Differentiation

Up to now, we have calculated derivatives of functions of the form

y = f(x), where y is defined explicitly in terms of z. In this section, we
examine relationships between variables that are implicit in nature,
meaning that y either is not defined explicitly in terms of x or cannot be
easily manipulated to solve for y in terms of x.

The goal of implicit differentiation is to find a single expression for the
derivative directly from an equation of the form F(x,y) = 0 without first
solving for y.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Example

Calculate g—g directly from the equation for the circle

2%+ y* = 0.

Solution: To remind ourselves that z is our independent
variable and that we are differentiating with respect to x, we
can replace y with y(x):

2+ (yx))” = 9.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Now differentiate each term with respect to x:

d

L) + (@) = ().

dz
By the Chain Rule, -&((y(z))?) = 2y(z)y/(z) (Version 2), or
d (y2) = 2y% (Version 1). So

dz

d
2x+2y£:0

dy  —2x

_ — = —
dx 2y
R

h

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

The derivative is a function of x and y, meaning we can write it in the
form

x
F(.’l?7y) = _g'

To find slopes of tangent lines at various points along the circle we just
plug in the coordinates. For example, the slope of the tangent line at
(0,3) is
dy
dx

(z,1)=(0,3)
The slope of the tangent line at (1,2v/2) is

dy
dzx

1
(z,9)=(1,2v/2) 22
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

The point is that, in some cases it is difficult to solve an implicit equation
in terms of y and then differentiate with respect to x. In other cases,
although it may be easier to solve for y in terms of x, you may need two
or more functions to do so, which means two or more derivatives must be
calculated (e.g., circles).

The goal of implicit differentiation is to find one single expression for the
derivative directly given F'(x,y) = 0 (i.e., some equation with xs and ys
in it), without solving first for y.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation

Week 7 Exam #2 Review

Question
The following functions are implicitly defined:

o x+yd—awy=4

o cos(x —y) +siny =2
For each of these functions, how would you find %?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exercise

Find % for zy + y° = 1.

Exercise

Find an equation of the line tangent to the curve
' — 2%y +y* =1 at the point (—1,1).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Higher Order De

Example

Find £Y if zy+yd =1

dx?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exercise
. . d d2
If sinz =siny, then 3£ =7 and -4 =7
cosy . tan y cos? z—sin z cos y
cosx’ cos?
B cosx. tanycos® z—sinx cosy
* cosy’ cos?y
C. cosz. cos y(sin z—sin y)
" cosy’ cos? y
D Cosy. cos y(sin z—sin y)
* cosz’ cos?x

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Power Rule for Rational Exponents

Implicit differentiation also allows us to extend the power rule

to rational exponents: Assume p and ¢ are integers with

q # 0. Then

d, B » P p_y

(provided = > 0 when ¢ is even and § is in lowest terms).

Exercise
Prove it. J

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

3.8 Book Problems
5-25 (odds), 31-49 (odds)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

@ 29 Feb - 4 March Bxam #2 Review

e Running Out of Time on the Exam Plus other Study
Tips
o Other Study Tips

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review

@ §3.2 Working with Derivatives

o Be able to use the graph of a function to sketch the
graph of its derivative, without computing derivatives

e Know the 3 conditions for when a function is not
differentiable at a point, and why these three conditions
make a function not differentiable at the given point

e Be able to determine where a function is not
differentiable

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review (cont.)

@ §3.3 Rules for Differentiation

@ Be able to use the various rules for differentiation (e.g.,
constant rule, power rule, constant multiple rule, sum and
difference rule) to calculate the derivative of a function.
Know the derivative of e”.

Be able to find slopes and/or equations of tangent lines.
Be able to calculate higher-order derivatives of functions.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review (cont.)

Exercise

Given that y = 3x + 2 is tangent to f(z) at x = 1 and that
y = —bx + 6 is tangent to g(z) at z = 1, write the equation
of the tangent line to h(x) = f(z)g(x) at = = 1.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review (cont.)

@ §3.4 The Product and Quotient Rules
o Be able to use the product and/or quotient rules to calculate
the derivative of a given function.
@ Be able to use the product and/or quotient rules to find
tangent lines and/or slopes at a given point.
o Know the derivative of e#*.
o Be able to combine derivative rules to calculate the derivative
of a function.
Note: Functions are not always given by a formula.
When faced with a problem where you don't know where

to start, go through the rules first.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review (cont.)

Exercise

Suppose you have the following information about the
functions f and g:

o Let FF=2f+ 3g. What is F((1)? What is F'(1)?

o Let G = fg. What is G(1)? What is G'(1)?
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review (cont.)

@ §3.5 Derivatives of Trigonometric Functions
e Know the two special trigonometric limits
sinx cosx —1

lim =1 and lim =0
z—0 T z—0 T

and be able to use them to solve other similar limits.

e Know the derivatives of sinz, cosx, tanz, cot z, secx, csc,
and be able to use the quotient rule to derive the derivatives
of tan x, cot x, secx, and cscx.

o Be able to calculate derivatives (including higher order)
involving trig functions using the rules for differentiation.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review (cont.)

Exercise
Calculate the derivative of the following functions:

o f(x) = (1+secx)sin®x

sinx + cotx

° gz) = COS T )
Exercise
i 3
Evaluate lim M
-3 732 4+ 8r + 15 |

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review (cont.)

@ §3.6 Derivatives as Rates of Change
o Be able to use the derivative to answer questions about rates
of change involving:
@ Position and velocity
@ Speed and acceleration
o Growth rates
@ Business applications

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review (cont.)

o Be able to use a position function to answer questions
involving velocity, speed, acceleration, height/distance at a
particular time ¢, maximum height, and time at which a given
height/distance is achieved.

@ Be able to use growth models to answer questions involving
growth rate and average growth rate, and cost functions to
answer questions involving average and marginal costs.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review (cont.)

@ §3.7 The Chain Rule

@ Be able to use both versions of the Chain Rule to find the
derivative of a composition function.

o Be able to use the Chain Rule more than once in a calculation
involving more than two composed functions.

@ Know and be able to use the Chain Rule for Powers:

d

Iz @) =n (f@)" " f'(2)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 5 3.7 The Chain Rule
Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review (cont.)

Exercise
Suppose f(9) =10 and g(z) = f(z*). What is ¢'(3)?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Exam #2 Review (cont.)

@ §3.7 Implicit Differentiation

@ Be able to use implicit differentiation to calculate %

@ Be able to use the derivative found from implicit
differentiation to find the slope at a given point and/or a line
tangent to the curve at the given point.

@ Be able to calculate higher-order derivatives of implicitly
defined functions.

o Be able to calculate % when working with functions
containing rational functions.
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Week 5 3.7 The Chain Rule

Week 6 3.8 Implicit Differentiation
Week 7 Exam #2 Review
Exam #2 Review (cont.) _

Exercise
Use implicit differentiation to calculate j—; for

e* = sin(wz)

Exercise
If sinz = siny, then

dy _ 9
._dl‘_'
2
dy _ 9
@ Gz T

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Running Out of Time on the Exam Plus other Study Tips

@ Do practice problems completely, from beginning to end (as if it
were a quiz). You might think you understand something but when
it's time to write down the details things are not so clear.

@ Find a buddy who understands concepts a little better than you and
work on problems for 2-3 hours. Then find a buddy who is
struggling and work with them 2-3 hours.

@ Don't count on cookie cutter problems. If you are doing a practice
problem where you've memorized all the steps, make sure you
understand why each step is needed. The exam problems may have
a small variation from homeworks and quizzes. If you're not
prepared, it'll come as a “twist” on the exam...

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Running Out of Time on the Exam Plus other Study Tips (cont.)

@ If you encounter an unfamiliar type of problem on the exam, relax,
because it's most likely not a trick! The solutions will always rely
on the information from the required reading/assignments. Take
your time and do each baby step carefully.

@ During the exam, do the problems you are most confident with first!

@ During the exam, budget your time. Count the problems and divide
by 50 minutes. The easier questions will take less time so doing
them first leaves extra time for the harder ones. When studying,
aim for 10 problems per hour (i.e., 6 minutes per problem).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Running Out of Time on the Exam Plus other Study Tips (cont.)

@ Always make sure you answer the question. This is also a good
strategy if you're not sure how to start a problem, figure out what
the question wants first.

@ The exam is not a race. If you finish early take advantage of the
time to check your work. You don't want to leave feeling smug
about how quickly you finished only to find out next week you lost
a letter grade’s worth of points from silly mistakes.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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3.7 The Chain Rule
3.8 Implicit Differentiation
Week 7 Exam #2 Review

Other Study Tips

@ Brush up on algebra, especially radicals, logs, common
denominators, etc. Many times knowing the right algebra will
simplify the problem!

@ When in doubt, show steps.

@ You will be punished for wrong notation. The slides for §3.1 show
different notations for the derivative. Make sure whichever one you
use in your work, that you are using it correctly.

@ Read the question!
@ Do the book problems.

@ Look at the pictures in the book and the interactive applets on
MLP.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Part 3. Applications and Story Problems

7-11 March

o Monday 7 March

§3.9 Derivatives of Logarithmic and Exponential Functions
o Derivative of y = Inx
o Derivative of y = In |z|
o Derivative of y = b”
e Story Problem Example
o Derivatives of General Logarithmic Functions
o Neat Trick: Logarithmic Differentiation
® Book Problems

Midterm Review
o Running Out of Time on the Exam Plus other Study Tips
o Other Study Tips
e Friday 11 March

§3.10 Derivatives of Inverse Trigonometric Functions
® Derivative of Inverse Sine
o Derivative of Inverse Tangent
® Derivative of Inverse Secant
o All Other Inverse Trig Derivatives
o Derivatives of Inverse Functions in General

o Book Problems
The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Part 3. Applications and Story Problems (cont.)

14-18 March
o Monday 14 March
o Steps for Solving Related Rates Problems
® Book Problems
o Wednesday 16 March

§4.1 Maxima and Minima
o Extreme Value Theorem
® Local Maxima and Minima
o Critical Points
® Local Extreme Point Theorem
o Locating Absolute Min and Max
® Book Problems
e Friday 18 March

§4.2 What Derivatives Tell Us
o How is it related to the derivative?
o First Derivative Test
e Absolute extremes on any interval
o Derivative of the derivative tells us:
o Test for Concavity
® Second Derivative Test
o Book Problems

The L@:r 28 Marasdork bAPIikannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified,/formatted by Dr. Ashley K. Wheeler.
o Monday 28 March
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Part 3. Applications and Story Problems (cont.)

§4.3 Graphing Functions
e Book Problems
o Wednesday 30 March

§4.4 Optimization Problems
e Essential Feature of Optimization Problems
e Guidelines for Optimization Problems
® Book Problems
e Friday 1 April

§4.5 Linear Approximation and Differentials
o Linear Approximation
o Intro to Differentials
® Book Problems

4-8 April

o Monday 4 April

§4.6 Mean Value Theorem
o Consequences of MVT
o Book Problems
o Wednesday 6 April

Exam #3 Review

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Mon 7 Mar

@ Exam 2: Solutions posted as soon as make-ups are in. But we will
go through them today. You'll get your test back in drill tomorrow
and the curve will be posted.

@ Midterm:

o Covers everything up to §3.9. All the slides are up. We will
work fast through them today, but solutions to the exercises
in the slides will be posted.

e Morning Section: Walker room 124
Afternoon Section: Walker room 218
You must take the test with your officially scheduled section.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Mon 7 Mar (cont.)

o If you have questions about your exam conflicts, contact me
NOW.

Study guide is in MLP.

Basic scientific calculator is allowed...? Yes.
Sit in every other seat.

15 Questions, 10 points each.

Don't expect a curve. :(

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

© 7-11 March

§3.9 Derivatives of Logarithmic and

Exponential Functions

e Derivative of y = Inz

o Derivative of y = In |z|

o Derivative of y = b®

e Story Problem Example

o Derivatives of General Logarithmic Functions
o Neat Trick: Logarithmic Differentiation

® Book Problems

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

§3.9 Derivatives of Logarithmic and Exponential
Functions

The natural exponential function f(z) = e has an inverse function,
namely f~!(z) = Inz. This relationship has the following properties:

1. e% =g for z > 0 and In(e®) = z for all z.
2. y=lhr <+ z=¢€Y
3. For real numbers x and b > 0,

b = 6ln(b ) — ewlnb'

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Derivative of y = Inz

Using 2. from the last slide, plus implicit differentiation, we can find
4 (Inz). Write y = Inz. We wish to find %. From 2.,

d d d

L= oY L %y
dm(:r 6):>dacx d;v(e)

dy
1=¢Y | =2
(%)

So A (lnz) = 2.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Derivative of y = In |z|

Recall, we can only take “In" of a positive number. However:
@ Forz >0, In|z|=Inz, so

d 1
%(IHM) =
@ Forz <0, In|z| =In(—2), so
d d 1 1
£(ln|x|) = £(ln(—x)) T (-1 .

In other words, the absolute values do not change the derivative of
natural log.
The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Exercise
Find the derivative of each of the following functions:

o f(xz)=In(152)
e g(x)=xInzx
@ h(z) = In(sinx)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Derivative of y = b*

What about other logs? Say b > 0. Since b* = nt" = erIn®
(by 3. on the earlier slide),

d T\ _ d zlnb
(%) = (")

= """ Inb

=b"Inb.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Exercise
Find the derivative of each of the following functions:

o f(z) =147
e g(x) = 45(3%)

Exercise
Determine the slope of the tangent line to the graph
f(z) =47 at z = 0.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Story Problem Example

Example

The energy (in Joules) released by an earthquake of magnitude M is
given by the equation

E = 25000 - 10",

(a) How much energy is released in a magnitude 3.0 earthquake?
(b) What size earthquake releases 8 million Joules of energy?

(c) What is 2E and what does it tell you?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Derivatives of General Logarithmic Functions

The relationship y = Inxz <= x = ¢¥ applies to logarithms of other
bases:

y=logyz <= x=10".

Now taking d% (z = bY) we obtain

dy
1=0Ilnbdb | ==
! (dz)

dy 1

dz  b¥Inb
d 1
g —
d:L'(Ogb z) zlnb
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Week 8
Week 9
Week 10
Week 11

3.9 Derivatives of Logarithmic and Exponential Functions

Midterm Review

3.10 Derivatives of Inverse Trigonometric Functions

3.11 Related Rates

Example
The derivative of f(z) = log, (10z) is

A.

B.
C.
D

L
10x

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Neat Trick: Logarithmic Differentiation

Example

Compute the derivative of f(z) = %

Solution: We can use logarithmic differentiation — first take
the natural log of both sides and then use properties of
logarithms.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

20— 1)3
in(#() = o (G )

=Ina? +In(z—1)* —In(3 4 52)*
=2Inz +3ln(z — 1) — 41n(3 + 5z)

Now we take 4. on both sides:

E) ) oot

fllz) 2 3 20

f(z) x+m—1_3+5m
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Finally, solve for f'(z):

fl@) = fla) |-+

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Exercise
Use logarithmic differentiation to calculate the derivative of

5
2

(z+1)2(z — 4)
(5z + 3)3

fz) =

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

3.9 Book Problems
9-29 (odds), 55-67 (odds)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

© 7-11 March

Midterm Review
o Running Out of Time on the Exam Plus other Study
Tips
e Other Study Tips
e Friday 11 March

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review

® §2.1-22

e Material may not be explicitly tested, but the topics
here are foundational to later sections.

@ §2.3 Techniques for Computing Limits

o Be able to do questions similar to 1-48.

@ Know and be able to compute limits using analytical methods
(e.g., limit laws, additional techniques).

o Be able to evaluate one-sided and two-sided limits of

functions.
@ Know the Squeeze Theorem and be able to use this theorem
to determine limits.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Midterm Review (cont.)

Exercise (problems from past midterm)

Evaluate the following limits:

o2 —x—6
o lim —————
r—3 1‘2 -9

. secOtand
lim ——

6—0 0

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
o 5 = = E DA

Wheeler Cal | Spring 2016



Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §2.4 Infinite Limits

Be able to do questions similar to 17-30.

Be able to use a graph, a table, or analytical methods to
determine infinite limits.

Be able to use analytical methods to evaluate one-sided limits.
Know the definition of a vertical asymptote and be able to
determine whether a function has vertical asymptotes.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §2.5 Limits at Infinity

Be able to do questions similar to 9-30 and 38-46.

Be able to find limits at infinity and horizontal asymptotes.
o Know how to compute the limits at infinity of rational
functions and algebraic functions.

Be able to list horizontal and/or vertical asymptotes of a
function.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Midterm Review (cont.)

Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Exercise

Determine the horizontal asymptote(s) for the function

D.

A
B.
C

y=2
y=20
y=—-2
y =12

1023 — 322 + 8

1@ = o rs

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §2.6 Continuity

Be able to do questions similar to 9-44.
Know the definition of continuity and be able to apply the
continuity checklist.

o Be able to determine the continuity of a function (including
those with roots) on an interval.

o Be able to apply the Intermediate Value Theorem to a
function.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Midterm Review (cont.)

Exercise (problem from past midterm)

Determine the value of k so the function is continuous on 0 < x < 2.

2+ k 0<z<1

F@ =93 gtesd 1<w<2

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §3.1 Introducing the Derivative

Be able to do questions similar to 11-32.
Know the definition of a derivative and be able to use this
definition to calculate the derivative of a given function.

o Be able to determine the equation of a line tangent to the
graph of a function at a given point.

e Know the 3 conditions for when a function is not
differentiable at a point, and why these three conditions make
a function not differentiable at the given point.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §3.2 Working with Derivatives

@ Be able to use the graph of a function to sketch the graph of
its derivative, without computing derivatives

@ Know the 3 conditions for when a function is not
differentiable at a point, and why these three conditions make
a function not differentiable at the given point

@ Be able to determine where a function is not differentiable

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §3.3 Rules for Differentiation

Be able to do questions similar to 7-41.

Be able to use the various rules for differentiation (e.g.,
constant rule, power rule, constant multiple rule, sum and
difference rule) to calculate the derivative of a function.
Know the derivative of e”.

Be able to find slopes and/or equations of tangent lines.
Be able to calculate higher-order derivatives of functions.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Midterm Review (cont.)

Exercise

Given that y = 32+ 2 is tangent to f(z) at x = 1 and that y = —52 + 6
is tangent to g(z) at = 1, write the equation of the tangent line to

h(z) = f(x)g(x) at x = 1.
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Wheeler Cal | Spring 2016



Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §3.4 The Product and Quotient Rules

Be able to do questions similar to 7-42 and 47-52.
Be able to use the product and/or quotient rules to calculate
the derivative of a given function.

o Be able to use the product and/or quotient rules to find
tangent lines and/or slopes at a given point.
Know the derivative of e**.

o Be able to combine derivative rules to calculate the derivative
of a function.

Note: Functions are not always given by a formula. When faced
with a problem where you don't know where to start, go through
the rules first.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Midterm Review (cont.)

Exercise

Suppose you have the following information about the functions f and g:

fy=6 f(1)=2 g(1)=2 ¢'(1)=3

o Let F =2f+ 3g. What is F(1)? What is F'(1)?

o Let G = fg. What is G(1)? What is G'(1)?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §3.5 Derivatives of Trigonometric Functions

Be able to do questions similar to 1-55.
Know the two special trigonometric limits

. sinx . cosx—1
lim =1 and lim ——— =0
x—0 X x—0 x

and be able to use them to solve other similar limits.

o Know the derivatives of sinz, cosz, tanz, cotz, secz, cscx,
and be able to use the quotient rule to derive the derivatives
of tanz, cot z, secx, and cscx.

@ Be able to calculate derivatives (including higher order)
involving trig functions using the rules for differentiation.
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Week 8
Week 9
Week 10
Week 11

Midterm Review (cont.)

3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review

3.10 Derivatives of Inverse Trigonometric Functions

3.11 Related Rates

Exercise

Calculate the derivative of the following functions:

o f(z) = (1 +secz)sin®x

sinx + cotx

° g(x) n COS ™

Exercise

. sin (z + 3)
Evaluate xl_l)n’_lg m

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §3.6 Derivatives as Rates of Change

o Be able to do questions similar to 11-18.
o Be able to use the derivative to answer questions about rates
of change involving:
@ Position and velocity
o Speed and acceleration
o Growth rates
o Business applications

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

o Be able to use a position function to answer questions
involving velocity, speed, acceleration, height/distance at a
particular time ¢, maximum height, and time at which a given
height/distance is achieved.

@ Be able to use growth models to answer questions involving
growth rate and average growth rate, and cost functions to
answer questions involving average and marginal costs.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §3.7 The Chain Rule

Be able to do questions similar to 7-43.
Be able to use both versions of the Chain Rule to find the
derivative of a composition function.

@ Be able to use the Chain Rule more than once in a calculation
involving more than two composed functions.

@ Know and be able to use the Chain Rule for Powers:

d

Iz @) = n(f(@)"" f'()
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Midterm Review (cont.)

Exercise
Suppose f'(9) = 10 and g(z) = f(2?). What is ¢/(3)?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §3.8 Implicit Differentiation

Be able to do questions similar to 5-26 and 33-46.
Be able to use implicit differentiation to calculate Z—Z
Be able to use the derivative found from implicit
differentiation to find the slope at a given point and/or a line
tangent to the curve at the given point.

o Be able to calculate higher-order derivatives of implicitly
defined functions.

o Be able to calculate % when working with functions
containing rational functions.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Midterm Review (cont.)

Exercise

Use implicit differentiation to calculate j—j} for

e* = sin(wz)

Exercise

If sinx = siny, then

dy _ 9
o dr = !
2
Iy _ 9
® T

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Midterm Review (cont.)

@ §3.9 Derivatives of Logarithmic and Exponential Functions
@ Be able to compute derivatives involving In z and log, =

@ Be able to compute derivatives of exponential functions of the
form b*

o Be able to use logarithmic differentiation to determine f/(z)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Running Out of Time on the Exam Plus other Study Tips

@ Do practice problems completely, from beginning to end (as if it
were a quiz). You might think you understand something but when
it's time to write down the details things are not so clear.

@ Find a buddy who understands concepts a little better than you and
work on problems for 2-3 hours. Then find a buddy who is
struggling and work with them 2-3 hours.

@ Don't count on cookie cutter problems. If you are doing a practice
problem where you've memorized all the steps, make sure you
understand why each step is needed. The exam problems may have
a small variation from homeworks and quizzes. If you're not
prepared, it'll come as a “twist” on the exam...

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Running Out of Time on the Exam Plus other Study Tips (cont.)

@ If you encounter an unfamiliar type of problem on the exam, relax,
because it's most likely not a trick! The solutions will always rely
on the information from the required reading/assignments. Take
your time and do each baby step carefully.

@ During the exam, do the problems you are most confident with first!

@ During the exam, budget your time. Count the problems and divide
by 50 minutes. The easier questions will take less time so doing
them first leaves extra time for the harder ones. When studying,
aim for 10 problems per hour (i.e., 6 minutes per problem).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Running Out of Time on the Exam Plus other Study Tips (cont.)

@ Always make sure you answer the question. This is also a good
strategy if you're not sure how to start a problem, figure out what
the question wants first.

@ The exam is not a race. If you finish early take advantage of the
time to check your work. You don't want to leave feeling smug
about how quickly you finished only to find out next week you lost
a letter grade’s worth of points from silly mistakes.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Other Study Tips

@ Brush up on algebra, especially radicals, logs, common
denominators, etc. Many times knowing the right algebra will
simplify the problem!

@ When in doubt, show steps.

@ You will be punished for wrong notation. The slides for §3.1 show
different notations for the derivative. Make sure whichever one you
use in your work, that you are using it correctly.

@ Read the question!
@ Do the book problems.

@ Look at the pictures in the book and the interactive applets on
MLP.
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Week 8
Week 9
Week 10
Week 11

Fri 11 Mar

3.9 Derivatives of Logarithmic and Exponential Functions

Midterm Review

3.10 Derivatives of Inverse Trigonometric Functions

3.11 Related Rates

@ Exam 2: Curve, etc. is posted.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Fri 11 Mar (cont.)

@ Midterm: expect it back next week in drill. Don't expect a curve. :(

@ “Fast Track Calculus”: Dr. Kathleen Morris will be teaching a
second 8 weeks Calculus One class. “If you have a student who is
maybe doing poorly because of illness or a tragic event in their life
during the beginning of the semester, this might be an opportunity
for a new start for them.” The class requires departmental consent
so the student will need to contact Kathleen to get permission to
enroll.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates
Functions

® Derivative of Inverse Sine

o Derivative of Inverse Tangent

® Derivative of Inverse Secant

o All Other Inverse Trig Derivatives

® Derivatives of Inverse Functions in General
® Book Problems

© 7-11 March

§3.10 Derivatives of Inverse Trigonometric

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

§3.10 Derivatives of Inverse Trigonometric
Functions

Recall: If y = f(z), then f~1(x) is the value of 3 such that
z=f(y).

Example
If f(x) =3z + 2, then what is f~1(x)?
NOTE: f'(z) # f(2)* (= 7&)

To avoid this confusion, we use arcsin x, arccosx arctanz,... to
denote inverse trig functions.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Derivative of Inverse Sine

Trig functions are functions, too. Just like with “f", there has
to be something to “plug in”. It makes no sense to just say
sin, without having sin(something).

y=sin"'z < 2 =siny
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

The derivative of y = sin™! = can be found using implicit differentiation:

T =siny
2 (@) = L (siny)
dy
1= -
(cosy) -
dy 1
dr  cosy

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

We still need to replace cosy with an expression in terms of z. We use
the trig identity sin® y + cos?y = 1 (careful with notation: in this case
we mean (siny) + (cosy)® = 1). Then

cosy = +1/1 —sin’y = /1 — 22.

The range of y = sin™' z is —5% <y < 5. In this range, cosine is never
negative, so we can just take the positive portion of the square root.
Therefore,

1 1 ,
dy - i(Silfl x) =

%_cosy:\/l_x2 dx

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Exercise
Compute the following:
1. & (sin'(42? — 3))

2. L (cos(sin™' z))

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Derivative of Inverse Tangent

Similarly to inverse sine, we can let y = tan~! z and use implicit
differentiation:

xr = tany
d d
(@) = o-(tany)
dy
1 = (sec’ y)—=
(sec”y) -
dy 1

dr  secZy

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Use the trig identity sec? yy — tan®y = 1 to replace sec? y with
1+ a2
1

1 .
—(tan $) = m

dx

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Derivative of Inverse Secant

Again, use the same method as with inverse sine:

Y= sec tz
T =secy
d d
%(x) = a(secy)

d
1= secytanyd—y
T

dy 1

dez  secytany

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Use the trig identity sec? y — tan? y = 1 again to get
tany = +v/sec2y — 1 = £/ 22 — 1.

This time, the &= matters:

_

= @ If z < —1, then
Domain of sec™ x|t tany < 0.

x=-lorx=1

Range of sec”! x

@ Ifz>1,then0 <y < I andso

tany > 0.

_.4..\.
NIE]

N

<y < and so

Ed
Os=y=mys—-
2

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates
Therefore,
. 1
—(sec™ " x)

dx B lz|v/z2 — 1

Using other trig identities (which you do not need to prove)

-1 -1 _ T -1 -1, _ T -1 -1 .. _
cos” ~ x+sin x—i cot” " x+tan x—§ csc T x+sec TxT =

o3

we can get the rest of the inverse trig derivatives.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

All Other Inverse Trig Derivatives

To summarize:

%(COS r) = —ﬁ
4 (sin”! z) 11_302 (-l<z<1)
4 (tan~tg) = L, L (cot™ x) = —lez
d; 1”1 (— oo<x<oo)
L(sec™ x) = ——F——
OO TERAT e ta) = s
(] > 1)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Example

Compute the derivatives of f(z) = tan™" (1) and
g(z) = sin (sec™!(21)).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

Derivatives of Inverse Functions in General

Let f be differentiable and have an inverse on an interval I. Let zy be a
point in I at which f/(x) # 0. Then f~1 is differentiable at yo = f(z0)

and
1

—1\/ _
(f ) (yO) - fl(xO)
where yo = f(x9).

Example

Let f(z) = 3z +4. Find f~'(z) and (f~1)" (3).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

3.10 Book Problems
7-33 (odds), 37-41 (odds)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

© 7-11 March

83.11 Related Rates

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

§3.11 Related Rates

In this section, we use our knowledge of derivatives to examine
how variables change with respect to time.

The prime feature of these problems is that two or more variables,
which are related in a known way, are themselves changing in time.

The goal of these types of problems is to determine the rate of
change (i.e., the derivative) of one or more variables at a specific
moment in time.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Problem

The edges of a cube increase at a rate of 2 cm/sec. How fast
is the volume changing when the length of each edge is 50 cm?

@ Variables: V' (Volume of the cube) and z (length of edge)

@ How Variables are related: V = z3

d
@ Rates Known: dit: =2 cm/sec

d
@ Rate We Seek: dit/ when £ = 50 cm

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions
Midterm Review
3.10 Derivatives of Inverse Trigonometric Functions
3.11 Related Rates

Note that both V' and x are functions of ¢ (their respective sizes
are dependent upon how much time has passed).

So we can write V(t) = 2(t)® and then differentiate this with
respect to ¢:

Note that z(t) is the length of the cube’s edges at time ¢,
and 2/(¢) is the rate at which the edges are changing at time
t.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 3.9 Derivatives of Logarithmic and Exponential Functions

Week 9 Midterm Review
Week 10 3.10 Derivatives of Inverse Trigonometric Functions
Week 11 3.11 Related Rates

We can rewrite the previous equation as

av dx

a v

So the rate of change of the volume when z = 50 cm is

av

i =3-50%-2 = 15000 cm?/sec.
dt =50

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

7w Day 2016

@ Exam 2: Curve, etc. is posted.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

7 Day 2016 (cont.)

@ Midterm: expect it back Thursday in drill. Don't expect a curve. :(

@ “Fast Track Calculus”: Dr. Kathleen Morris will be teaching a
second 8 weeks Calculus One class. “If you have a student who is
maybe doing poorly because of illness or a tragic event in their life
during the beginning of the semester, this might be an opportunity
for a new start for them.” The class requires departmental consent
so the student will need to contact Kathleen to get permission to
enroll.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Steps for Solving Related Rates Problems

4.

5.

Read the problem carefully, making a sketch to organize the
given information. ldentify the rates that are given and the
rate that is to be determined.

. Write one or more equations that express the basic

relationships among the variables.

Introduce rates of change by differentiating the appropriate
equation(s) with respect to time ¢.

Substitute known values and solve for the desired quantity.

Check that the units are consistent and the answer is
reasonable.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

The Jet Problem

A jet ascends at a 10° angle from the horizontal with an
airspeed of 550 miles/hr (its speed along its line of flight is
550 miles/hr). How fast is the altitude of the jet increasing? If
the sun is directly overhead, how fast is the shadow of the jet
moving on the ground?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Step 1: There are three variables: the distance the shadow has
traveled (z), the altitude of the jet (h), and the distance the jet
has actually traveled on its line of flight (z). We know that

dt = 550 miles/hr and we want to find dz and . We also see
that these variables are related through a nght trlangle.

10°

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Step 2: To answer how fast the altitude is increasing, we need an
equation involving only h and z. Using trigonometry,

sin(10°) = h — h =sin(10°) - 2.
z

To answer how fast the shadow is moving, we need an equation
involving only « and z. Using trigonometry,

cos(10°) = T — 2= cos(10°) - z.
z

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Step 3: We can now differentiate each equation to answer each question:

. o dh . o dz
h =sin(10°) - z = %fsm(lo )dt

d d
x =cos(10°) - z = d—f = cos(10°)—z

Step 4: We know that %2 = 550 miles/hr. So
dh
i sin(10°) - 550 ~ 95.5 miles/hr
dx o .
i cos(10°) - 550 ~ 541.6 miles/hr

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Step 5: Because both answers are in terms of miles/hr and
both answers seem reasonable within the context of the
problem, we conclude that the jet is gaining altitude at a rate
of 95.5 miles/hr, while the shadow on the ground is moving at
about 541.6 miles/hr.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Example

The sides of a cube increase at a rate of R cm/sec. When the sides
have a length of 2 cm, what is the rate of change of the volume?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Exercise

A 13 foot ladder is leaning against a vertical wall when Jack
begins pulling the foot of the ladder away from the wall at a
rate of 0.5 ft/sec. How fast is the top of the ladder sliding
down the wall when the foot of the ladder is 5 ft from the wall?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Exercise

Sand falls from an overhead bin and accumulates in a conical
pile with a radius that is always three times its height.
Suppose the height of the pile increases at a rate of 2 cm/sec.
When the pile is 12 cm high, at what rate is the sand leaving
the bin? Recall the volume of a cone: V = imrh.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

3.11 Book Problems
5-14, 16-19, 21-24, 37-38

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
=] 5 = = £ DA

Wheeler Cal | Spring 2016



Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Wed 16 Mar

@ Midterm: Take your raw score out of 140, instead of 150, for the
curve.
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Letter Grade

@ Office hours 1030-1230 today and Friday.
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Week 8
Week 9 4.1 Maxima and Minima

Week 10 4.2 What Derivatives Tell Us
Week 11

® Book Problems
e Friday 18 March

e 14-18 March

84.1 Maxima and Minima
o Extreme Value Theorem
® Local Maxima and Minima
o Critical Points
o Local Extreme Point Theorem
o Locating Absolute Min and Max

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

§4.1 Maxima and Minima

Chapter 4 is all about applications of the derivative. In the
first couple of sections we examine the graphs of functions and
what the derivative can tell us about the graph’s behavior and
characteristics.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Definition

Let f be defined on an interval I containing c.

@ f has an absolute maximum value on [ at ¢ means
f(e) > f(x) for every x in I.

@ f has an absolute minimum value on I at ¢ means
f(e) < f(x) for every x in I.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

The existence and location of absolute extreme values depend on the
function and the interval of interest:

A
4
\
No absolute max Absolute max of 4
atx=2
Absolute min of 0 Absolute min of 0
atx=10 atx=0
. -
- y v

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Absolute max of 4
atx=2

No absolute max

No absolute min No absolute min

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Extreme Value Theorem

Theorem (Extreme Value Theorem)

A function that is continuous on a closed interval [a,b] has an

absolute maximum value and an absolute minimum value on that
interval.

The EVT provides the criteria that ensures absolute extrema:
@ the function must be continuous on the interval of interest;

@ the interval of interest must be closed and bounded.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Local Maxima and Minima

Beyond absolute extrema, a graph may have a number of peaks
and dips throughout its interval of interest:

Local maximum: Absolute maximum:

No greater value of

No greater value of
[ neatby. fonla, ). Alsoa
local maximum

Absolute minimum: Local minimum:
No smaller value of No smaller value of
fonla, 5] 1 nearby.

L
a c d ] &
The base for tl shley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Definition
Suppose [ is an interval on which f is defined and ¢ is an interior
point of I.

@ If f(c) > f(x) for all x in some open interval containing c,
then f(c) is a local maximum value of f.

@ If f(c) < f(x) for all x in some open interval containing c,
then f(c) is a local minimum value of f.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Exercise
Use the graph below to identify the points on the interval [a,b] at
which local and absolute extreme values occur.
¥
1 1
1 1 ]
1 1 ]
] ] ]
1 ] 1 ]
1 I 1 ] ]
| I | 1 I ]
[ I | 1 I ]
1 1 1 | ]
1 ] 1 ] ]
1 ] 1 I ]
[ I | 1 I ]
[ I | ] I I ]
e
crss s 1+ b
The bast Wheeler.
=] = - = = )
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Critical Points

Based on the previous graph, how is the derivative related to
where the local extrema occur?

Local extrema occur where the derivative either does not exist
or is equal to 0.

Definition
An interior point ¢ of the domain of f at which f'(¢) =0 or
f'(c) fails to exist is called a critical point of f.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Local Extreme Point Theorem

Theorem (Local Extreme Point Theorem)

If f has a local minimum or maximum value at ¢ and f’(c) exists,
then f'(c) = 0. (Converse is not true!)

It is possible for f'(c) =0 or f'(c) not to exist at a point, yet the
point not be a local min or max. Therefore, critical points provide
candidates for local extrema, but do not guarantee that the points
are local extrema (see p. 227 immediately before Figure 4.9 for
examples).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Locating Absolute Min and Max

Two facts help us in the search for absolute extrema:

@ Absolute extrema in the interior of an interval are also
local extrema, which occur at critical points of f.

@ Absolute extrema may occur at the endpoints of f.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Procedure: Assume that the function f is continuous on [a, b].

1. Locate the critical points ¢ in (a,b), where f’(c) =0 or f’(c) does
not exist. These points are candidates for absolute extrema.

2. Evaluate f at the critical points and at the endpoints of [a, ].

3. Choose the largest and smallest values of f from Step 2 for the
absolute max and min values, respectively.

NOTE: In this section, given an equation, we can identify critical points
and absolute extrema, BUT NOT LOCAL EXTREMA. Techniques for
locating local extrema come in later sections.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Example

On the interval [—2, 2], the function f(x) = x*

A. has no local or absolute extrema.

B. has a local minimum but no absolute minimum.
C. has an absolute maximum but no local maxima.
D

has an absolute maximum at an interior point of the
interval.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Exercise

Given f(z) = (z + 1)*? on [-8, 8], determine the critical
points and the absolute extreme values of f.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

4.1 Book Problems
11-35 (odds), 37-49 (odds)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Fri 18 Mar

@ Midterm: Take your raw score out of 140, instead of 150, for the
curve.

Distribution
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10.0% 30.0% 50.0% 70.0% 90.0%

Letter Grade

@ Office hours 1030-1230 today.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

§4.2 What Derivatives Tell Us
e How is it related to the derivative?
o First Derivative Test
e Absolute extremes on any interval

o Derivative of the derivative tells us:
e 14-18 March e Test for Concavity

® Second Derivative Test
® Book Problems

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

§4.2 What Derivatives Tell Us

Definition
Suppose a function f is defined on an interval I.
e We say that f is increasing on [ if f(zq) > f(x;)
whenever x1 and x5 are in I and zo > 7.

e We say that f is decreasing on [ if f(z3) < f(z1)
whenever z; and x5 are in I and x9 > ;.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

How is it related to the derivative?

Suppose f is continuous on an interval [ and differentiable at
every interior point of I.

e If f'(x) > 0 for all interior points of I, then f is
increasing on [.

e If f'(x) < 0 for all interior points of I, then f is

decreasing on 1.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Example

Sketch a function that is continuous on (—oo, 00) that has the
following properties:

e f'(—1) is undefined;
o f'(z) > 0on (—oo,—1);

o f'(x) <0on (—1,4);

e f'(x) > 0on (4,00).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Example
Find the intervals on which

f(z) =32° —4x + 12

is increasing and decreasing. If you graph f and f’ on the
same axes, what do you notice?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

First Derivative Test

Suppose that f is continuous on an interval that contains a critical point
c and assume f is differentiable on an interval containing ¢, except
perhaps at c itself.

@ If f’ changes sign from positive to negative as x increases through
¢, then f has a local maximum at c.

@ If f’ changes sign from negative to positive as x increases through
¢, then f has a local minimum at c.

@ If f/ does not change sign at ¢ (from positive to negative or vice
versa), then f has no local extreme value at c.

NOTE: The First Derivative Test does NOT test for

increasing/decreasing, only local max/min. Use it on critical points.
The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Exercise

If f(z) =223+ 32% — 12z + 1, identify the critical points on
the interval [—3,4], and use the First Derivative Test to locate
the local maximum and minimum values. What are the

absolute max and min?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Absolute extremes on any interval

The Extreme Value Theorem (cf., Section 4.1) stated that we were
guaranteed extreme values only on closed intervals.

However: Suppose f is continuous on an interval I that contains

only one local extremum at (z =)c.

@ If it is a local minimum, then f(c) is the absolute minimum of
fonl.

@ If it is a local maximum, then f(c) is the absolute maximum
of fonI.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

rivative of the derivative tells us:

The ba.

Just as the first derivative f’ told us whether the function f was
increasing or decreasing, the second derivative f” also tells us
whether f’ is increasing or decreasing.

Definition
Let f be differentiable on an open interval I.

@ If f is increasing on I, then f is concave up on I.

@ If f/ is decreasing on I, then f is concave down on 1.

Definition
If f is continuous at ¢ and f changes concavity at ¢ (from up to
down, or vice versa), then f has an inflection point at c.

v

Wheeler Cal | Spring 2016

Nheeler.



Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Test for Concavity

Suppose that f” exists on an interval I.

e If f/>0on I, then f is concave up on I.
e If f” <0 on I, then f is concave down on I.

@ If cis a point of I at which f”(¢) =0 and f” changes
signs at ¢, then f has an inflection point at c.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

Example

What would a function with the following properties look like?
1. f/>0and f">0

2. f'>0and f"<0

3. ff<O0and f”">0

4. f'<0and [" <0

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Second Derivative Test

Suppose that f” is continuous on an open interval containing
c with f’(¢) = 0.

o If f”(c) >0, then f has a local minimum at c.

e If f"(c) <0, then f has a local maximum at c.

(
o If f”(c) =0, then the test is inconclusive.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 9 4.1 Maxima and Minima
4.2 What Derivatives Tell Us

Exercise

Given f(z) = 22® — 622 — 18z

(a) Determine the intervals on which it is concave up or
concave down, and identify any inflection points.

(b) Locate the critical points, and use the 2nd Derivative

Test to determine whether they correspond to local
minima or maxima, or whether the test is inconclusive.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.1 Maxima and Minima
Week 10 4.2 What Derivatives Tell Us
Week 11

4.2 Book Problems
11-47 (odds), 53-81 (odds)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8

4.3 Graphing Functions
Wede & 4.4 Optimization Problems
Week 10 4 g L - .
Week 11 4.5 Linear Approximation and Differentials

Mon 28 Mar

@ Exam 3: next week, probably Friday. Covers §3.10-4.6

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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gk (s 4.3 Graphing Functions

Week 9 4.4 Optimization Problems
Week 10 Li A iRt Diff ial
Week 11 4.5 Linear Approximation and Differentials

o Wednesday 30 March

@ 28 Mar — 1 April

§4.3 Graphing Functions

o Book Problems

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

veckpiO 4.5 Linear Approximation and Differentials

§4.3 Graphing Functions

Graphing Guidelines:

1.

6.
7.
8.

Identify the domain or interval of interest.

2. Exploit symmetry.
3.
4
5

Find the first and second derivatives.

. Find critical points and possible inflection points.

. Find intervals on which the function is increasing or decreasing, and

concave up/down.
Identify extreme values and inflection points.
Locate vertical /horizontal asymptotes and determine end behavior.

Find the intercepts.

The base forgfese gjngvgssdgneaDo Da Q}Qn(ngrng\kérxaq &EaeR:tueggtole{Mpw éﬂ dut a@k@oaﬁie%ﬁr@cﬁd by Dr. Ashley K. Wheeler.
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gk (s 4.3 Graphing Functions

Week 9 4.4 Optimization Problems
Week 10 4.5 Linear Approximation and Differentials
Week 11 ' oe

Exercise
According to the graphing guidelines, sketch a graph of

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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gk (s 4.3 Graphing Functions

Wieele & 4.4 Optimization Problems
Week 10 4.5 Linear Approximation and Differentials
Week 11 : oe

4.3 Book Problems
7,8, 15-35 (odds), 45-53

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

Wed 30 Mar

@ Exam 3: next Friday. Covers §3.10-4.6

@ Algebra Seminar: today at 3p in SCEN 322.
“The talk will be given by our own Ashley Wheeler on the
Title: Local cohomology of Stanley-Reisner rings.” (from
the department email).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8 " .
Week 9 4.3 Graphing Functions

Week 10 4.4 Optimization Problems
Week 11 4.5 Linear Approximation and Differentials

84.4 Optimization Problems
o Essential Feature of Optimization Problems
o Guidelines for Optimization Problems
® Book Problems
e Friday 1 April

@ 28 Mar — 1 April

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems
veckpiO 4.5 Linear Approximation and Differentials

4.4 Optimization Problems

In many scenarios, it is important to find a maximum or minimum
value under given constraints. Given our use of derivatives from
the previous sections, optimization problems follow directly from
what we have studied.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



N, a
gk (s 4.3 Graphing Functions

Neek ¢
W & 4.4 Optimization Problems
Week 10 Li A . . d Diff ial
Week 11 4.5 Linear pproxlmatlon an ifferentials

Question

Given all nonnegative real numbers x and y between 0 and 50 such
that their sum is 50 (i.e., z +y = 50), which pair has the
maximum product?

This is a basic optimization problem. In this problem, we are given
a constraint (x +y = 50) and asked to maximize an objective
function (A = zy).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.3 Graphing Functions
Weel: \1(7) 4.4 Optimization Problems
Week 11 4.5 Linear Approximation and Differentials

The first step is to express the objective function A = xy in terms
of a single variable by using the constraint:

y=>50—2r = A(x) =x(50 — x).

To maximize A, we find the critical points:

A'(z) = 50 — 2z which has a critical point at z = 25.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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N, a
gk (s 4.3 Graphing Functions

Neek ¢
Wi ® 4.4 Optimization Problems
Week 10 Li A . . d Diff ial
Week 11 4.5 Linear pproxlmatlon an ifferentials

Since A(x) has domain [0, 50], to maximize A we evaluate A
at the endpoints of the domain and at the critical point:

A(0) = A(50) = 0 and A(25) = 625.

So 625 is the maximum value of A and A is maximized when
x = 25 (which means y = 25).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

Essential Feature of Optimization Problems

All optimization problems take the following form:

What is the maximum (or minimum) value of an objective function
subject to the given constraint(s)?

Most optimization problems have the same basic structure as the
previous problem: An objective function (possibly with several
variables and/or constraints) with methods of calculus used to find
the maximum/minimum values.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Meek 8
gk (s 4.3 Graphing Functions

N

W & 4.4 Optimization Problems
Week 10 Li A ! . o B -
Week 11 4.5 Linear Approximation an: ifferentials

Exercise
Suppose you wish to build a rectangular pen with two interior
parallel partitions using 500 feet of fencing. What dimensions will
maximize the total area of the pen?
Y
x x T x
Y

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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N, a
gk (s 4.3 Graphing Functions

Neek ¢
Wi ® 4.4 Optimization Problems
Week 10 Li A . . d Diff ial
Week 11 4.5 Linear pproxlmatlon an ifferentials

By the picture, 2y 4+ 4z = 500 which implies y = —2x + 250. We
are maximizing A = xy. So write

A(z) = 2(—22 + 250) = —22% 4 250z

Taking the derivative, A’(x) = —42 4 250 = 0, A has a critical
point at z = 62.5.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

From the picture, since we have 500 ft of fencing available we must have
0 <z < 125. To find the max we must examine the points
x =0,62.5,125:

A(0) = A(125) = 0 and A(62.5) = 7812.5

We see that

the maximum area is 7812.5 ft°. ‘

The pen's dimensions (answer the question!) are |z = 62.5 ft | and

[y = —2(62.5) + 250 = 125 ft.|

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

veckpiO 4.5 Linear Approximation and Differentials

Guidelines for Optimization Problems

1. READ THE PROBLEM carefully, identify the variables, and
organize the given information with a picture.

2. Identify the objective function (i.e., the function to be optimized).
Write it in terms of the variables of the problem.

3. ldentify the constraint(s). Write them in terms of the variables of
the problem.

4. Use the constraint(s) to eliminate all but one independent variable
of the objective function.

5. With the objective function expressed in terms of a single variable,
find the interval of interest for that variable.

6. Use methods of calculus to find the absolute maximum or minimum
value of the objective function on the interval of interest. If
The base for these EECRSSIAHCYhy @hﬁ&konﬁhr%n&ﬂ th)Qjc&ESim IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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gk (s 4.3 Graphing Functions
Week 9 PR
4.4 Optimization Problems
Week 10 4 iy . .
Week 11 4.5 Linear Approximation and Differentials

Question

The sum of a pair of positive real numbers that have a
product of 9 is

9
S(l‘)—x—i—g,

where x is one of the numbers. This sum S(z) has a minimum
when:

A =9
B. =3
C. =6
D.

none of the above

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8
Week 9
Week 10
Week 11

4.3 Graphing Functions
4.4 Optimization Problems
4.5 Linear Approximation and Differentials

Exercise

An open rectangular box with square base is to be made from
48 ft? of material. What dimensions will result in a box with the
largest possible volume?

Exercise

Find the dimensions of the rectangle of largest area which can be
inscribed in the closed region bounded by the x-axis, y-axis, and
the graph of y = 8 — x3.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Weds @ 4.3 Graphing Functions

e 4.4 Optimization Problems
Week 10 / 3 L . :
Week 11 4.5 Linear Approximation and Differentials

4.4 Book Problems
5-16, 19-20, 24, 26

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8
Week 9
Week 10
Week 11

Fri 1 Apr

@ Exam 3: next Friday. Covers §3.10-4.6

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Wil & 4.3 Graphing Functions

Wi ® 4.4 Optimization Problems
Week 10 4 sl - .
Week 11 4.5 Linear Approximation and Differentials

84.5 Linear Approximation and Differentials
e Linear Approximation
e Intro to Differentials
® Book Problems

@ 28 Mar — 1 April

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

§4.5 Linear Approximation and Differentials

Suppose f is a function such that f’ exists at some point P. If you zoom
in on the graph, the curve appears more and more like the tangent line to
f at P.

]
Location of point P
T
HET The curve
x=b fle)y approaches its
x=c tangent as we zoom
inon P.
Zoominto P
fe)
EWE »
Sfla)f
a El c

The base for these slides was done by r. Shannon Lingman, later encoded Into IAIEX by Dr. Brad Lutes and moditied /formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

Linear Approximation

This idea — that smooth curves (i.e., curves without corners) appear
straighter on smaller scales — is the basis of linear approximations.

One of the properties of a function that is differentiable at a point P is
that it is locally linear near P (i.e., the curve approaches the tangent line
at P.)

Therefore, it makes sense to approximate a function with its tangent line,
which matches the value and slope of the function at P.

This is why you've had to do so many “find the equation for the tangent
line to the given point” problems!

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

Definition
Suppose f is differentiable on an interval I containing the point a. The
linear approximation to f at a is the linear function

L(z) = f(a)+ f'(a)(x —a)  forzin I.

Remarks: Compare this definition to the following: At a given point
P = (a, f(a)), the slope of the line tangent to the curve at P is f’(a).
So the equation of the tangent line is

y = fla) = f(a)(z - a).

(Yes, it is the same thing!)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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gk (s 4.3 Graphing Functions

Wi ® 4.4 Optimization Problems
Week 10 q A . .
Week 11 4.5 Linear Approximation and Differentials

Exercise

Write the equation of the line that represents the linear
approximation to

X

f($):x+1 ata = 1.

Then use the linear approximation to estimate f(1.1).

Solution: First compute
1 1

/ = — =
f(il?) - (x_i_l)za

1 1 1 1

The base for these slides was done by Dr. Shannon Dingman; later encoded into IATEX by Dr. é’ad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

Solution (continued):

Because x = 1.1 is near a = 1, we can estimate f(1.1) using
L(1.1):
f(1.1) ~ L(1.1) = 0.525

Note that f(1.1) = 0.5238, so the error in this estimation is

0.525 — 0.5238

05238 x 100 = 0.23%.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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gk (s 4.3 Graphing Functions

Wi ® 4.4 Optimization Problems
Week 10 Li A A Diff ial
Week 11 4.5 Linear Approximation and Differentials

Exercise

(a) The linear approximatioln to f(z) = /1 + x at the point
z =0 is (choose one):

A. L(z)=1
B. L(z)=1+7%
C. Lx)==
D. L(z)=1-%

(b) What is an approximation for f(0.1)?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

Intro to Differentials

Our linear approximation L(z) is used to approximate f(z) when a
is fixed and z is a nearby point:

f(x) = f(a) + f'(a)(z — a)

When rewritten,

f(@) = f(a) = f'(a)(z — a)
= Ay~ f'(a)Ax.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

A change in y can be approximated by the corresponding change in x,
magnified or diminished by a factor of f’(a).

This is another way to say that f’(a) is the rate of change of y with
respect to z!

Ay =~ f'(a)Ax

AyN/
E'vf(a)

So if f is differentiable on an interval I containing the point a, then the
change in the value of f (the Ay), between two points a and a + Az in
I, is approximately f/(z)Ax.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

We now have two different, but related quantities:

@ The change in the function y = f(z) as x changes from a to
a+ Az (which we call Ay).

@ The change in the linear approximation y = L(z) as x
changes from a to a + Az (called the differential, dy).

Ay ~ dy

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

When the z-coordinate changes from a to a + Ax:
@ The function change is exactly Ay = f(a + Az) — f(a).
@ The linear approximation change is
AL = L(a+ Azx) — L(a)
= (f(a) + f'(a)(a + Az — a)) ~ (f(a) + f'(a)(a — a)
= f'(a)Az

and this is dy.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Neek ¢
V\\/;el:kl(; 4.4 Optimization Problems
Week 11 4.5 Linear Approximation and Differentials

We define the differentials dx and dy to distinguish between the
change in the function (Ay) and the change in the linear
approximation (AL):

@ dx is simply the change in x, i.e. Ax.

@ dy is the change in the linear approximation, which is

AL = f'(a)Az.
SO:
AL = f'(a)Ax
dy = f'(a)dx
dy Y _
W_ fa) (ate=a)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

Definition
Let f be differentiable on an interval containing z.

@ A small change in z is denoted by the differential dx.

@ The corresponding change in y = f(x) is approximated by the
differential dy = f’(x)dx; that is,

Ay = f(z+ Az) — f(z)
~ dy = f'(z)dz.

The use of differentials is critical as we approach integration.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.3 Graphing Functions
4.4 Optimization Problems

Week 10 4.5 Linear Approximation and Differentials

Example

Use the notation of differentials [dy = f’(x)dz] to approximate the
change in f(z) = 2 — 22 given a small change dx.

Solution: f/(z) =1 — 32?2, so dy = (1 — 32?)dx.
A small change dz in the variable x produces an approximate
change of dy = (1 — 322)dx in y.

For example, if z increases from 2 to 2.1, then dx = 0.1 and
dy = (1-3(2)%) (0.1) = —1.1.

This means as x increases by 0.1, y decreases by 1.1.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Weds @ 4.3 Graphing Functions

e 4.4 Optimization Problems
Week 10 ] o L . .
Week 11 4.5 Linear Approximation and Differentials

4.5 Book Problems
13-20, 35-50

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8
Week 9
Week 10
Week 11

Mon 4 Apr

@ Exam 3: Friday. Covers §3.10-4.6

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.6 Mean Value Theorem
Week 10 Exam #3 Review
Week 11

@ 48 April

§4.6 Mean Value Theorem
e Consequences of MVT
® Book Problems
e Wednesday 6 April

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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4.6 Mean Value Theorem
Exam #3 Review
Week 11

§4.6 Mean Value Theorem

In this section, we examine the Mean Value Theorem, one of the
“big ideas” that provides the basis for much of calculus.

Before we get to the mean Value Theorem, we examine Rolle's
Theorem, where the property f(a) = f(b) holds, for some function
f(zx) defined on an interval [a, b].

Question

If you have two points (a, f(a)) and (b, f(b)), with the property
that f(a) = f(b), what might this look like?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.6 Mean Value Theorem
Week 10 Exam #3 Review
Week 11

Theorem (Rolle’s Theorem)

Let f be continuous on a closed interval [a,b] and differentiable on
(a,b) with f(a) = f(b). Then there is at least one point c in (a,b)
such that f'(c) = 0.

Essentially what Rolle’s Theorem concludes is that at some
point(s) between a and b, f has a horizontal tangent.

Question

Note the hypotheses in this theorem: f is continuous on [a,b] and
differentiable on (a,b). Why are these important?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.6 Mean Value Theorem
Week 10 Exam #3 Review
Week 11

Exercise
Determine whether Rolle’s Theorem applies to the function
f(z) = 2% — 22° — 8z on the interval [—2,0].
@ If it doesn't, find an interval for which Rolle’s Thm could
apply to that function.

o If it does, what is the “c" value so that f’(c) = 07

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.6 Mean Value Theorem
Week 10 Exam #3 Review
Week 11

Theorem (Mean Value Theorem (MVT))

If f is continuous on a closed interval [a,b] and differentiable
on (a,b), then there is at least one point c in (a,b) such that

f(b) — f(a)

I e,

See Figure 4.68 on p. 276 for a visual justification of MVT.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.6 Mean Value Theorem
Exam #3 Review
Week 11

The slope of the secant line connecting the points (a, f(a)) and

(0, f(b)) is
f(b) = f(a)
b—a
MVT says that there is a point ¢ on f where the tangent line at ¢
(whose slope is f’(c)) is parallel to this secant line.

Question

Suppose you leave Fayetteville for a location in Fort Smith that is
60 miles away. If it takes you 1 hour to get there, what can we say
about your speed? If it takes you 45 minutes to get there, what
can we say about your speed?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.6 Mean Value Theorem
Week 10 Exam #3 Review
Week 11

Example
Let f(x) = 2? — 4z + 3.
1. Determine whether the MVT applies to f(z) on the
interval [—2, 3].

2. If so, find the point(s) that are guaranteed to exist by the
MVT.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.6 Mean Value Theorem
Week 10 Exam #3 Review
Week 11

Example

How many points ¢ satisfy the conclusion of the MVT for
f(x) = x® on the interval [—1,1]? Justify your answer.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.6 Mean Value Theorem
Week 10 Exam #3 Review
Week 11

Consequences of MVT

Theorem (Zero Derivative Implies Constant Function)

If f is differentiable and f'(x) = 0 at all points of an interval I,
then f is a constant function on I.

Theorem (Functions with Equal Derivatives Differ by a Constant)

If two functions have the property that f'(x) = ¢'(z) for all z of
an interval I, then f(x) — g(x) = C on I, where C is a constant.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.6 Mean Value Theorem
Week 10 Exam #3 Review
Week 11

Theorem (Intervals of Increase and Decrease)

Suppose f is continuous on an interval I and differentiable at all
interior points of I.

@ If f'(x) > 0 at all interior points of I, then f is increasing on
1.

e If f'(x) < 0 at all interior points of I, then f is decreasing on
1.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.6 Mean Value Theorem
Week 10 Exam #3 Review
Week 11

4.6 Book Problems
7-14, 17-24

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.6 Mean Value Theorem
Week 10 Exam #3 Review
Week 11

Wed 6 Apr

e Exam 3: Friday. Covers §3.10-4.6. You will need a
scientific calculator.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8

Week 9 4.6 Mean Value Theorem
Week 10 Exam #3 Review
Week 11

@ 48 April

Exam #3 Review

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. W
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4.6 Mean Value Theorem
Exam #3 Review
Week 11

Exam # 3 Review

@ §3.10 Derivatives of Inverse Trig Functions

o Know the derivatives of the six inverse trig functions.
@ Also: You are responsible for every derivative rule and every
derivative formula we have covered this semester.

@ §3.11 Related Rates

o Know the steps to solving related rates problems, and be able
to use them to solve problems given variables and rates of
change.

@ Be able to solve related rates problems. If, while doing the
HW (paper or computer), you were provided a formula in
order to solve the problem, then | will do the same. If you
were not provided a formula while doing the HW (paper or

The base for these slides was &oderﬁlﬁoféarn)?nm@ﬁn,lla§1§60wiirro ﬁ\gf %Pé&[ﬂiéufh@d%?ir{ﬁdﬂfrgnlaned by Dr. Ashley K. Wheeler.
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4.6 Mean Value Theorem
Exam #3 Review
Week 11

Exam # 3 Review (cont.)

Exercise

An inverted conical water tank with a height of 12 ft and a radius
of 6 ft is drained through a hole in the vertex at a rate of 2

ft3 /sec. What is the rate of change of the water depth when the
water depth is 3 ft?

@ §4.1 Maxima and Minima

o Know the definitions of maxima, minima, and what makes
these points local or absolute extrema (both analytically and
graphically).

@ Know how to find critical points for a function.

@ Given a function on a given interval, be able to find local
and/or absolute extrema.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.6 Mean Value Theorem
Exam #3 Review
Week 11

Exam # 3 Review (cont.)

o Given specified properties of a function, be able to sketch a
graph of that function.

@ §4.2 What Derivatives Tell Us

o Be able to use the first derivative to determine where a
function is increasing or decreasing.

o Be able to use the First Derivative Test to identify local
maxima and minima. Be able to explain in words how you
arrived at your conclusion.

@ Be able to find critical points, absolute extrema, and inflection
points for a function.

o Be able to use the second derivative to determine the
concavity of a function.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Exam #

4.6 Mean Value Theorem
Exam #3 Review
Week 11

3 Review (cont.)

@ 843

Be able to use the Second Derivative Test to determine
whether a given point is a local max or min. Be able to
explain in words how you arrived at your conclusion.
Know your Derivative Properties!!! (see Figure 4.36 on p.
256)

Graphing Functions

Be able to find specific characteristics of a function that are
spelled out in the Graphing Guidelines on p. 261 (e.g., know
how to find z- and y-intercepts, vertical /horizontal
asymptotes, critical points, inflection points, intervals of
concavity and increasing/decreasing, etc.).

Be able to use these specific characteristics of a function to
sketch a graph of the function.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.6 Mean Value Theorem
Exam #3 Review
Week 11

Exam # 3 Review (cont.)

@ §4.4 Optimization Problems

o Be able to solve optimization problems that maximize or
minimize a given quantity.

o Be able to identify and express the constraints and objective
function in an optimization problem.

o Be able to determine your interval of interest in an
optimization problem (e.g., what range of z-values are you
searching for your extreme points?)

e As to formulas, the same comment made above with
respect to formulas for related rates problems applies
here as well.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.6 Mean Value Theorem
Exam #3 Review
Week 11

Exam # 3 Review (cont.)

Exercise
What two nonnegative real numbers a and b whose sum is 23 will

(a) minimize a® + b%?

(b) maximize a? + b%?

@ 64.5 Linear Approximation and Differentials

@ Be able to find a linear approximation for a given function.

o Be able to use a linear approximation to estimate the value of
a function at a given point.

o Be able to use differentials to express how the change in x
(dzx) impacts the change in y (dy).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.6 Mean Value Theorem
Exam #3 Review
Week 11

Exam # 3 Review (cont.)

@ 4.6 Mean Value Theorem (for Derivatives)

@ Know and be able to state Rolle’s Thm and the Mean Value
Thm, including knowing the hypotheses and conclusions for
both.

@ Be able to apply Rolle’s Thm to find a point in a given
interval.

o Be able to apply the MVT to find a point in a given interval.

o Be able to use the MVT to find equations of secant and
tangent lines.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.6 Mean Value Theorem
Exam #3 Review

Wee )
Week 11

Exam # 3 Review (cont.)

Exercise (s)

Determine whether the Mean Value Theorem (or Rolle’s Theorem)
applies to the following functions. If it does, then find the point(s)
guaranteed by the theorem to exist.

(1) f(z)=sin(2z) on [0, %]

(2) g(z) =In(2z) on [1,¢]

(3) h(z) =1—|z|on [-1,1]

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 8
Week 9
Week 10
Week 11

Exam # 3 R

Exercise (s)
(4) j(z) =241 on[1,3]
(5) k(z) = ;75 on [-1,2]

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Part 4. Introduction to Integrals

11-15 April

e Monday 11 April
§4.7 L'Hépital’s Rule

e L'Hopital’s Rule in disguise

o Other Indeterminate Forms

o Wednesday 13 April

o Examining Growth Rates

e Pitfalls in Using Lépital's Rule
o Book Problems

84.9 Antiderivatives
o Indefinite Integrals
@ Rules for Indefinite Integrals
o Indefinite Integrals of Trig Functions
o Other Indefinite Integrals
e Friday 15 April
o Initial Value Problems
® Book Problems

§5.1 Approximating Area Under Curves

o Riemann Sums

18-22 April
o Monday 18 April
The basgf@igﬁ.ﬁ pidestishdone by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Part 4. Introduction to Integrals (cont.)

o Riemann Sums Using Sigma Notation
o Book Problems

§5.2 Definite Integrals
o Net Area
o General Riemann Sums
e The Definite Integral
e Evaluating Definite Integrals
o Properties of Integrals
o Book Problems
o Wednesday 20 April
o Properties of Integrals
® Book Problems

§5.3 Fundamental Theorem of Calculus
® Area Functions
e The Fundamental Theorem of Calculus (Part 1)
e The Fundamental Theorem of Calculus (Part 2)
o Overview of FTOC
® Book Problems
e Friday 22 April

§5.4 Working with Integrals
o Integrating Even and Odd Functions
o Average Value of a Function
o Mean Value Theorem for Integrals
The basef@dbdsePrgbiers done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Part 4. Introduction to Integrals (cont.)

25-29 April

o Monday 25 April
Exam #4 Review

o Other Remarks on the Exam
o Wednesday 27 April

Exam #4 Review

o Other Remarks on the Exam

2-4 May

e Monday 2 May
§5.5 Substitution Rule

o Integration by Trial and Error

@ Substitution Rule

e Substitution Rule for Indefinite Integrals

® Procedure for Substitution Rule (Change of Variables)
® Variations on Substitution Rule

® Substitution Rule for Definite Integrals

® Book Problems

o Wednesday 4 May

Final Preparation
o About the Test
® Advice for the FINAL
The basefdEdbtee Eggsx@tm by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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vecKkpl2 4.7 L'Hapital's Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

Mon 11 Apr

@ Exam 3: expect Thursday in drill. Stay tuned for the
solutions. Protocol for appeals.

@ No (scheduled) office hours Friday.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 12 R R SR (IR e

Wi ds 4.9 Antiderivatives
Week 14 51 Approximating Area Under C
Week 15 .1 Approximating Area Under Curves

@ 11-15 April

84.7 L'Hopital's Rule
e L'Hopital’s Rule in disguise
o Other Indeterminate Forms
o Wednesday 13 April
o Examining Growth Rates
e Pitfalls in Using Lépital's Rule
® Book Problems

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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i ce 2 4.7 L'Hépital’s Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

§4.7 L'Hopital's Rule

In Ch. 2, we examined limits that were computed using analytical
techniques. Some of these limits, in particular those that were
indeterminate, could not be computed with simple analytical
methods.

For example,

. sinx .1 —cosx
lim and lim —
z—0 X x—0 x

are both limits that can’t be computed by substitution, because
plugging in 0 for z gives %.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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/eckyl2 4.7 L'Hopital's Rule

ity s 4.9 Antiderivatives
Week 14 51 Approximating Area Under C
Week 15 .1 Approximating Area Under Curves

Theorem (L'Hépital’s Rule (2))

Suppose [ and g are differentiable on an open interval 1
containing a with ¢'(x) # 0 on I when x # a. If

lim f(z) = lim g(x) =0

Tr—a Tr—a

then

lim /(@) = lim ['(z)

v=ag(z)  a—ag'(x)

il

provided the limit on the right side exists (or is +00).

(The rule also applies if z — a is replaced by z — 400, z — a™ or
x—a”.)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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/eckyl2 4.7 L'Hopital's Rule

s 4.9 Antiderivatives
Week 14 51 A e iy Ui @
Week 15 .1 Approximating Area Under Curves

Example
Evaluate the following limit:
.ot ad 42042
lim .
rz——1 x+1

Solution: By direct substitution, we obtain 0/0. So we must apply
I'Hépital’s Rule (LR) to evaluate the limit:

d
NI S A S — (2* + 2% + 22 + 2)
lim = lim 4L
z——1 r+1 z——1 i(x—}-l)
dx
. dad 4+ 322+ 2
= lim ——m——
z——1 1
=—4+3+2=1

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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/eckyl2 4.7 L'Hopital's Rule

ity s 4.9 Antiderivatives
Week 14 51 Approximating Area Under C
Week 15 .1 Approximating Area Under Curves

Theorem (L'Hépital’s Rule (£2))

Suppose f and g are differentiable on an open interval 1
containing a with ¢'(x) # 0 on I when x # a. If

lim f(z) = lim g(z) = +00

Tr—a Tr—a

then ,
lim @) = lim f(z)

z—a g(x) z—a g’(:p)7

provided the limit on the right side exists (or is +00).

(The rule also applies if z — a is replaced by z — 400, z — a™ or
T —a”.)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 12 R R SR (IR e

Wi ds 4.9 Antiderivatives
Week 14 51 Approximating Area Under C
Week 15 . pproximating rea nder urves

Exercise
Evaluate the following limits using I'Hopital’s Rule:
43 22246
o lim —
T—00 x4+ 4

tan 4z
. J—

im
z—0 tan 7x

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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i ce 2 4.7 L'Hépital's Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

L'Hopital's Rule in disguise

Other indeterminate limits in the form 0 - co or oo — 0o cannot be
evaluated directly using I'Hépital’s Rule.

For 0 - 0o cases, we must rewrite the limit in the form 2 or % A

0
common technique is to divide by the reciprocal:

T—00

. 1
lim 22 sin( 1 ) = lim - <51:2>
’ 522) 1

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 12 R R SR (IR e

ek 13 4.9 Antiderivatives
Week 14 51 A s e Ul @
Week 15 .1 Approximating Area Under Curves

Exercise

Compute lim zsin | —
T—r00

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 12 R R SR (IR e

Wi ds 4.9 Antiderivatives
Week 14 51 Approximating Area Under C
Week 15 .1 Approximating Area Under Curves

For co — oo, we can divide by the reciprocal as well as use a change of

variables:

Example

Find lim = — /22 + 2z.
T—00

Solution:

lim z — V2?2 4+ 2z = lim o —¢/22(1 +

T—r 00 Tr— 00

2

= lim x —24/1+ =

00 T
/ 2
=limaz(1—4/1+—
x—00 X

= lim
xT—r00 —

)

SRR

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 12 YTl
Week 13 4.7 L'Hopital's Rule

Week 14 4.9 Antiderivatives
\\’;el\ 5 5.1 Approximating Area Under Curves

This is now in the form %, so we can apply I'H6pital’'s Rule and
evaluate the limit.

In this case, it may even help to change variables. Let t = 1:

L=+ 11— VI+2
hmizhmi.

T—00 t—0+ t

SN

1
T

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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i ce 2 4.7 L'Hépital's Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

Other Indeterminate Forms

Limits in the form 1°°, 09, and oo® are also considered indeterminate
forms, and to use I'Hépital’s Rule, we must rewrite them in the form % or
2. Here's how:

Assume lim f(:c)g(i) has the indeterminate form 1°°, 0°, or oc?.
r—a

1. Evaluate L = ligl g(x)In f(x). This limit can often be put in the

form % or % which can be handled by I'Hépital’s Rule.

2. Then lim f(:r)g(w) = el. Don't forget this step!
xr—a

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 12 R R SR (IR e

Wieee il 4.9 Antiderivatives
Wik 5.1 Approximating Area Under C
Week 15 . pproximating rea naer urves

Example

1 X
Evaluate lim (14 —
T—00 €T

Solution: This is in the form 1°°, so we need to examine

1
L = lim xln(l—i——)
T—00 x
In(1+2
= lim —n(l :)
Tr—r 00 ;
1 1
LR . 1+l(_ﬂ”_2)
= lim T
xTr—r00 _P
1
= lim — =1
:v—><>01—}-z

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 12 R R SR (IR e

Wieee il 4.9 Antiderivatives
Wik 5.1 Approximating Area Under C
Week 15 . pproximating rea naer urves

NOT DONE! Write

lm (1+—-)] =e"=¢ =e.
T—00 x

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 12 R R SR (IR e

Wi Lo 4.9 Antiderivatives
Wil 5.1 Approximating Area Under C
Week 15 . pproximating rea naer urves
@ Exam 3
Problem
Total 1a 1b lc 2 3a 3b 3c 4 5a 5b 5c 5d 5e 5f 5g 5h 5i
oor] 7| 5| 3| 312]  o s|1z] 2] 2| a| 3 33| 3] ¢ 4
Median--> 3% 5 1 0 3 3 3 3 6 2 1232z 21 11.5
Spread:
40

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.

The base for these slides was done by Dr. matted by Dr. Ashley K. Wheeler.
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/eckyl2 4.7 L'Hopital's Rule

/ ¢
tt,:t :j 4.9 Antiderivatives
Week 15 5.1 Approximating Area Under Curves

Wed 13 Apr (cont.)

@ No (scheduled) office hours today. | will be in 1220p.
@ ALL MLPs are open now.
@ April 22: Last day to drop with a "W".

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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i ce 2 4.7 L'Hépital's Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

Examining Growth Rates

The bz

We can use I'Hopital’'s Rule to examine the rate at which functions grow
in comparison to one another.

Definition

Suppose f and g are functions with lim f(z) = lim g(z) = co. Then

Tr—r00 Tr—00

f grows faster than g as z — oo if

f(z)

lim =00

. oglz) f(z)
a:h—>Holo f(z) =0 z—o0 g(x)

g < f means that f grows faster than g as x — oc.

Definition
The functions f and g have comparable growth rates if
i @)

m —— = M, where 0 < M < 0.

Wheeler Cal | Spring 2016
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i ce 2 4.7 L'Hépital’s Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

Pitfalls in Using I'H6pital’s Rule

!/
1. L'Hopital’s Rule says that lim f(@) = lim f/(x
T—a g(]; T—a g (,7;)

s 00 =t [15] o i 05 = [ 5] 0

. NOT

(i.e., don’t confuse this rule with the Quotient Rule).

2. Be sure that the limit with which you are working is in the form %
or =,
oo
3. When using I'Hopital’s Rule more than once, simplify as much as
possible before repeating the rule.
4. If you continue to use I'Hopital’s Rule in an unending cycle, another
method must be used.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wi ds 4.9 Antiderivatives
W1 5.1 Approximating Area Under Curvi
Week 15 .1 Approximating Area er Curves

4.7 Book Problems
13-59 (odds), 69-79 (odds)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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/eckyl2 4.7 L'Hapital's Rule

e 13 4.9 Antiderivatives
Week 14 51 A e i Ui @
Week 15 . pproximating rea naer urves

o Initial Value Problems
e Book Problems

@ 11-15 April

84.9 Antiderivatives
o Indefinite Integrals
o Rules for Indefinite Integrals
o Indefinite Integrals of Trig Functions
o Other Indefinite Integrals
o Friday 15 April
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vecKkpl2 4.7 L'Hapital's Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

§4.9 Antiderivatives

With differentiation, the goal of problems was to find the function
f’ given the function f.

With antidifferentiation, the goal is the opposite. Here, given a
function f, we wish to find a function F such that the derivative
of F'is the given function f (i.e., F' = f).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wz 1 4.7 L'Hépital's Rule

Wik il 4.9 Antiderivatives
Week 14 51 Approximating Area Under C
Week 15 . pproximating rea nder urves

Definition
A function F' is called an antiderivative of a function f on an
interval I provided F'(x) = f(x) for all z in I.

Example
Given f(z) =4, an antiderivative of f(z) is F(z) = 4x.

NOTE: Antiderivatives are not unique!

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



vecKkpl2 4.7 L'Hapital's Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

They differ by a constant (C):

Theorem

Let F' be any antiderivative of f. Then all the antiderivatives of f have
the form F + C, where C' is an arbitrary constant.

Recall: %f(x) = f'(z) is the derivative of f(z).

Now: [ f(z) dv = F + C is the antiderivative of f(z). It doesn't matter
which F' you choose, since writing the C' will show you are talking about
all the antiderivatives at once. The C' is also why we call it the indefinite
integral.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wik il 4.9 Antiderivatives
Week 14 51 Approximating Area Under C
Week 15 . pproximating Area Under Curves

Example
Find the antiderivatives of the following functions:

(1) fl@)=—62""
(2) g(x) = —4cosdx

(3) h(z) =csc?®x

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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vecKkpl2 4.7 L'Hapital's Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

Indefinite Integrals

Example

f4a:3 dx = 2* + C, where C is the constant of integration.

The dx is called the differential and it is the same dx from
Section 4.5. Like the %, it shows which variable you are talking
about. The function written between the f and the dx is called
the integrand.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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/eckyl2 4.7 L'Hapital's Rule

tt::t :_i 4.9 Antiderivatives
Week 15 5.1 Approximating Area Under Curves
Rules for Indefinite Integrals
an
Power Rule: [z? dx = +C
p+1

(p is any real number except —1)
Constant Multiple Rule: [c¢f(z) dz=c [ f(z) dx

Sum Rule: [ (f(z)+g(z)) de = [ f(z) de+ [ g(z) dz

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 14 51 A e A Uil €
Week 15 -1 Approximating Area Under Curves

Exercise

(521 + 22 + 1) do =

2023 + 2+ C
P4t —x+C

2+ +C

o o0 w >

422 —x+C

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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/eckyl2 4.7 L'Hopital's Rule

Wik il 4.9 Antiderivatives
Week 14 51 Approximating Area Under C
Week 15 . pproximating Area Under Curves

Exercise
Evaluate the following indefinite integrals:

(1) [(3z7%2—42?+1) dz
@) J6¢F do
(3) [2cos(2x) dx

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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vecKkpl2 4.7 L'Hapital's Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

Indefinite Integrals of Trig Functions

Table 4.9 (p. 322) provides us with rules for finding indefinite integrals of
trig functions.

d 1
1. —(sinazx) = acos ax —>/cosar dx = —sinaz + C
dz a
1
2. —(cosazr) = —asinax —>/sin ar dv = ——cosax + C
dx a
d , , 1
3. d—(tan ax) = asec” ax — [ sec®ax de = —tanazx + C
x a
d , , 1
4. d—(cot ar) = —acsc” ax — [ esc®ax doz = ——cotax + C
x a

1
- (secax) = asecax tan ax —>/sec artanar de = —secax + C
x a

d 1
. —(cscax) = —acscaxcot axr — | cscax cotax dr = ——cscax + C
The base for t(\i& slides was done by Dr. Shannon Dingman, later encoded intoATEX by Dr. Brad Lutes and modified/formgted by Dr. Ashley K. Wheeler.
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Wik il 4.9 Antiderivatives
Week 14 51 Approximating Area Under C
Week 15 . pproximating rea nder urves

Example

Evaluate the following indefinite integral: [ 2sec? 2z d.

Solution: Using rule 3, with a = 2, we have

1
/28602233 dac:2/se(:22x dr =2 [Etan%:] + C =tan2x + C.

Exercise
Evaluate [ 2cos(2z) dx.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 13 B
w:t :é g? ﬁgigrdoirilr\r’]aattl;lnegs; Area Under Curves
Other Indefinite Integrals

d 1

d 1 dx

< (nfal) = 1 [ 5 =+

d (. 4 1 dz .1 /(T

9 %<sm ( )) 77F2_x2‘>/772 — = sin (E)JrC

-1 _a de 1 /=@
1O'd7<tan ()>7a2+x2 —>/a2+$27;tan (E)JFO
d d 1
1 (et [2) - s [t L 2]
dx a zvx2 — a2 T2 — a2

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Wieee il 4.9 Antiderivatives
Wil 5.1 Approximating Area Under C
Week 15 . pproximating rea naer urves
@ Exam 3
Problem
Total 1a 1b lc 2 3a 3b 3c 4 5a 5b 5c 5d 5e 5f 5g 5h 5i
ot oz| 5] | 3] sltz| 5 | s|z| 2] 2| a] 3] 3] 3] 3] 4] &
Median--> 3% 5 1 0 3 3 3 3 6 2 1232z 21 11.5
Spread:
40

10.0 20.0 30.0 40.0 50.0 60.0 70.0 80.0 90.0 100.

The base for these slides was done by Dr. matted by Dr. Ashley K. Wheeler.
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/ ,
e 13 4.9 Antiderivatives

Week 14 ! h

Week 15 5.1 Approximating Area Under Curves

Fri 15 Apr (cont.)

@ No (scheduled) office hours today. | will be in 1220p.
@ ALL MLPs are open now.
@ April 22: Last day to drop with a "W".

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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vecKkpl2 4.7 L'Hapital's Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

Initial Value Problems

In some instances, you have enough information to determine the value
of C'in the antiderivative. These are often called initial value problems.
Finding f(z) is often called finding the solution.

Example
If f/(z) =T72% —42® + 12 and f(1) = 24, find f(z). J

Solution: f(z) = [(72% — 423 +12) dov = 2" — 2* + 122+ C. Now find
out which C gives f(1) = 24:

2U=f1)=1-1+12+C,
so C' = 12. Hence, f(z) =27 — 2* + 122 + 12.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



Wz 1 4.7 L'Hépital's Rule

Wik il 4.9 Antiderivatives
Week 14 51 Approximating Area Under C
Week 15 . pproximating Area Under Curves

Exercise
Find the function f that satisfies f”(t) = 6¢ with f/(0) =1
and f(0) = 2.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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e 13 4.9 Antiderivatives
Week 14 51 A e i Ui @
Week 15 . pproximating rea naer urves

4.9 Book Problems
11-45 (odds), 59-73 (odds), 83-93 (odds) J

Advice: To solve 83-93 (odds), read pages 325-326, focusing
on Example 8.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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w::t ii 4.9 Antiderivatives
Week 15 5.1 Approximating Area Under Curves
@ 11-15 April §5.1 Approximating Area Under Curves

e Riemann Sums

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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vecKkpl2 4.7 L'Hapital's Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

§5.1 Approximating Area Under Curves

In the previous two chapters, we have come to see the derivative of
a function associated with the rate of change of a function as well
as the slope of the tangent line to the curve.

In the first section of Chapter 5, we now examine the meaning of
the integral.

Question
If we know the velocity function of a particular object, what does
that tell us about its position function?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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vecKkpl2 4.7 L'Hapital's Rule

4.9 Antiderivatives
5.1 Approximating Area Under Curves

Example

Suppose you ride your bike at a constant velocity of 8 miles per
hour for 1.5 hours.

a) What is the velocity function that models this scenario?

b) What does the graph of the velocity function look like?

(a)
(b)
(c) What is the position function for this scenario?
(d)

d) Where is the displacement (i.e., the distance you've traveled)
represented when looking at the graph of the velocity

function?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.9 Antiderivatives
5.1 Approximating Area Under Curves

In the previous example, the velocity was constant. In most cases,
this is not accurate (or possible). How could we find displacement
when the velocity is changing over an interval?

One strategy is to divide the time interval into a particular number
of subintervals and approximate the velocity on each subinterval
with a constant velocity. Then for each subinterval, the
displacement can be evaluate and summed.

Note: This provides us with only an approximation, but with a
larger number of subintervals, the approximation becomes more
accurate.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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ity s 4.9 Antiderivatives
Week 14 5.1 A imating A Under C
Week 15 .1 Approximating Area Under Curves

Example

Suppose the velocity of an object moving along a line is given by
v(t) = /10t on the interval 1 < t < 7. Divide the time interval into
n = 3 subintervals, assuming the object moves at a constant velocity
equal to the value of v evaluated at the midpoint of the subinterval.
Estimate the displacement of the object on [1,7]. Repeat for n =6
subintervals.

Vv v
v=WVI10r v=%I10

81+ _— 8+
P 74 64

/
44 / 44
2+ 2+

I.' It I T T T T T T T
0l 1 2 3 4 56 7 1 0l 1 2 3 4 56 7 I

4

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.9 Antiderivatives
5.1 Approximating Area Under Curves

Riemann Sums

The more subintervals you divide your time interval into, the more
accurate your approximation of displacement will be.We now examine a
method for approximating areas under curves.

Consider a function f over the interval [a,b]. Divide [a,b] into n
subintervals of equal length:

(20, 21], [71, 2], ., [Tn—1, T
with £y = a and x,, = b. The length of each subinterval is denoted

bh—
Az = a.
n

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.9 Antiderivatives
5.1 Approximating Area Under Curves

In each subinterval [z_1, 2] (where k is any number from 1 to n), we
can choose any point Ty (note T might be different, depending on
which k), and create a rectangle with a height of f(Zx).

The area of the rectangle is “base times height”, written f(Z))Az, since
the base is the length of the subinterval.

Doing this for each subinterval, and then summing each rectangle’s area,
produces an approximation of the overall area. This approximation is
called a Riemann sum

R = f(@) Az + f(T2)Ax + - - + f(Tp)Awx.

The symbol “k” is what's known as an indexing variable. We let k vary
from 1 to n, and we always have x| < T < xy.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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4.9 Antiderivatives
5.1 Approximating Area Under Curves

Note: We usually choose Ty, so that it is consistent across all the
subintervals.

Definition

Suppose
R = f(T1)Ax + f(T2)Az + -+ + f(Tn) Az

is a Riemann sum. Then:

1. R is a left Riemann sum when we choose T, = x;_1 for each k
(so Ty, is the left endpoint of the subinterval).

2. Ris a right Riemann sum when we choose T}, = x;, for each k (so
Ty, is the right endpoint of the subinterval).

3. R is a midpoint Riemann sum when we take T}, to be the
midpoint between x;_1 and xy, for each k.

(See pages 337-339 for picture of these.)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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e 4.9 Antiderivatives
Week 14 51 A e P Ul @
Week 15 -1 Approximating Area Under Curves

Example

Calculate the left Riemann sum for the function f(x) = 22 — 1 on the
interval [2,4] when n = 4.

A. 13.75
B. 19.75
C. 275
D. 55

Exercise

Compute the left, right, and midpoint Riemann sums for the function
f(x) = 223 on the interval [0,8] with n = 4.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 13

Mon 18 Apr

@ April 22: Last day to drop with a "W".
@ Exam 4 next week, probably Friday. Covers §4.7-5.4
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Wheeler Cal | Spring 2016



Week 13

Sigma Notation

Riemann sums become more accurate when we make n (the number of
rectangles) bigger, but obviously writing it all down is no fun! Sigma
notation gives a shorthand. Here is how sigma notation works, through
an example:

Example

22:1 n? is the sum all integer values from the lowest limit (n = 1) to
the highest limit (n = 5) in the summand n? (in this case n is the
indexing variable).

5
Zn2:12—|—22—|—32—|—42—|—52:55.
n=1

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 13
Week 14
Week 15
Example
Evaluate >3_(2k — 1). J

Solution: In this example, & is the indexing variable. It starts at 0 and
goes to 3, which means we write down the expression in the parentheses
for each of the integers from 0 to 3, then add the results together:

3

> 2k —1)

k=0

20)-D+20-HD+2E)-1)+2B3) -1

=-1+1+3+5=8.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 13
Week 14
Week 15

Y-Shortcuts

(n is always a positive integer)
n

Z ¢ = cn (where ¢ is a constant)

k=1
i b n(n+1)
k=1 2
Zn:kZ _n(n+1)2n+1)
k=1 6
zn:k?’ _n’(n+1)°
k=1 4
Question
What is the indexing variable in these formulas? J

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Riemann Sums Using Sigma Notation

Suppose f is defined on a closed interval [a, b] which is divided into n
subintervals of equal length Az. As before, T;, denotes a point in the kth
subinterval [xy_1, 2], for k =1,2,...,n. Recall that 2o = a and

T, = b.

Here is how we can write the Riemann sum in a much more compact
form:

R=f(T)Ax+ f(Z) Az + -+ f(Tn) Az = > [(T)Aw.
k=1

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 13

With sigma-notation we can even derive explicit formulas for
the basic Riemann sums (the expression in red is Ty for each
case:

1. Zf(a + (k — 1)Ax)Az = left Riemann sum
k=1
2. Zf(a + kAx)Ax = right Riemann sum

k=1

3. Z f(a+ (k= 3) Az)Az = midpoint Riemann sum
k=1

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Exercise

(a) Use sigma notation to write the left, right, and midpoint
Riemann sums for the function f(x) = 22 on the interval
[1,5] given that n = 4.

(b) Based on these approximations, estimate the area bounded by
the graph of f(z) over [1,5].

Suggestion: As n gets very big, Riemann sums, along with the
>-shortcuts plus algebra, often make the problem way more
manageable.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 12
Week 13
Week 14
Week 15

5.1 Book Problems
9-37

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 12
Week 13
Week 14
Week 15

5.2 Definite Integrals

e Properties of Integrals
e Book Problems

e Wednesday 20 April
o Properties of Integrals
® Book Problems

§5.2 Definite Integrals
o Net Area
o General Riemann Sums
e The Definite Integral
e Evaluating Definite Integrals
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5.2 Definite Integrals

5.2 Definite Integrals

In §5.1, we saw how we can use Riemann sums to approximate the
area under a curve. However, the curves we worked with were all
non-negative.

Question J

What happens when the curve is negative?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 12
Week 13
Week 14
Week 15

5.2 Definite Integrals

Example

Let f(z) = 8 — 22 over the interval [0,4]. Use a left, right,
and midpoint Riemann sum with n = 4 to approximate the
area under the curve.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



5.2 Definite Integrals

Net Area

In the previous example, the areas where f was positive provided positive
contributions to the area, while areas where f was negative provided
negative contributions. The difference between positive and negative
contributions is called the net area.

Definition
Consider the region R bounded by the graph of a continuous function f
and the x-axis between x = a and x = b. The net area of R is the sum

of the areas of the parts of R that lie above the x-axis minus the sum of
the areas of the parts of R that lie below the z-axis on [a, b].

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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5.2 Definite Integrals

The Riemann sums give approximations for the area under the
curve. To make these approximations more and more accurate, we
divide the region into more and more subintervals. To make these
approximations exact, we allow the number of subintervals

n — 00, thereby allowing the length of the subintervals Az — 0.
In terms of limits:

n—o0

n
Net Area = lim Zf(fk)Aa:
k=1

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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5.2 Definite Integrals

General Riemann Sums

Suppose [zg, 1], [€1,Z2], ..., [Tn_1, Tn] are subintervals of [a, b] with
a=x9g< Ty <Tg<--<xp_1 <x,=>0. Let Axy be the length of the
subinterval [x_1, ] and let Ty be any point in [zr_1, 2] for
k=1,2,...,n. If fis defined on [a,b], then the sum

n

> @Az, = f(T1) Ay + f(T2)Azo + - + f(Tn) Az,
k=1

is called a general Riemann sum for f on [a, b].

Note: In this definition, the lengths of the subintervals do not have to be
equal.
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5.2 Definite Integrals

The Definite Integral

As n — oo, all of the Az — 0, even the largest of these. Let A be the
largest of the Axy's.

Definition

The definite integral of f from a to b is

b n
/a f(z) de = L{iglogf(fk)Axk,

where f is a function defined on [a, b]. When this limit exists — over all
partitions of [a, b] and all choices of Tj on a partition — f is called
integrable.
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Week 12

Week 13 2 g
Week 14 5.2 Definite Integrals
Week 15

Evaluating Definite Integrals

Theorem

If f is continuous on [a,b] or bounded on [a,b] with a finite number of
discontinuities, then f is integrable on [a, b].

See Figure 5.23, p. 325, for an example of a noncontinuous function that
is integrable.

Knowing the limit of a Riemann sum, we can now translate that to a
definite integral.

Example

n 4
lim » (47 — 3)Axy on [—1,4] / (4x — 3) dx
A—0 Pt 1
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Week

1
Week 1 . .
Week 14 5.2 Definite Integrals
Week 15

Without formally examining methods to evaluate definite integrals,
we can use geometry.

Exercise

Using geometry, evaluate f12(4w —3) dx.

(Hint: The area of a trapezoid is A = M where h is the
height of the trapezoid and /; and I are the lengths of the two
parallel bases.)
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Week 12
Week 13
Week 14
Week 15

5.2 Definite Integrals

Exercise
Using the picture below, evaluate the following definite integrals:

1. /Oaf(:zr)da: 2. /Obf(ac)da; 3. /ch(:c)d:c 4. /acf(x)dx

¥
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Week 12

Week 13 2 g
Week 14 5.2 Definite Integrals
Week 15

Properties of Integrals

1. (Reversing Limits) [," f(z) dz = —f: f(z) dz

N

. (Identical Limits) [ f(z) dz =0

®

(Integral of a Sum)
I2(f@) + (@) do = [ f(x) do+ [’ g(z) do

4. (Constants in Integrals) f: cf(x) do = cf: f(z) dz
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5.2 Definite Integrals

Properties of Integrals, cont.

5. (Integrals over Subintervals) If ¢ lies between a and b, then

/abf(a:) dac:/acf(x) dm+/cbf(x) da.

6. (Integrals of Absolute Values) The function |f| is integrable on [a, b]
and fab |f(z)| dx is the sum of the areas of regions bounded by the
graph of f and the x-axis on [a,b]. (See Figure 5.31 on p. 329)

(This is the total area, no negative signs.)
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Week 12
Week 13
Week 14
Week 15

5.2 Definite Integrals

Exercise
If f24 f(z) dz =3 and ff f(z) de = —2, then compute
f26 f(z) dx.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 12
Week 13
Week 14
Week 15

5.2 Definite Integrals

5.2 Book Problems
11-45 (odds), 67-74
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5.2 Definite Integrals

Wed 20 Apr

@ Exam 3: Issue with increasing/decreasing, number lines,
etc. Point for signature.

@ April 22: Last day to drop with a "W".
@ Exam 4 next week, probably Friday. Covers §4.7-5.4
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Week

1
Week 1 . .
Week 14 5.2 Definite Integrals
Week 15

Without formally examining methods to evaluate definite integrals,
we can use geometry.

Exercise

Using geometry, evaluate f12(4w —3) dx.

(Hint: The area of a trapezoid is A = M where h is the
height of the trapezoid and /; and I are the lengths of the two
parallel bases.)
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Week 12
Week 13
Week 14
Week 15

5.2 Definite Integrals

Exercise
Using the picture below, evaluate the following definite integrals:

1. /Oaf(:zr)da: 2. /Obf(ac)da; 3. /ch(:c)d:c 4. /acf(x)dx

¥
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Week 12

Week 13 2 g
Week 14 5.2 Definite Integrals
Week 15

Properties of Integrals

1. (Reversing Limits) [," f(z) dz = —f: f(z) dz

N

. (Identical Limits) [ f(z) dz =0

®

(Integral of a Sum)
I2(f@) + (@) do = [ f(x) do+ [’ g(z) do

4. (Constants in Integrals) f: cf(x) do = cf: f(z) dz
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5.2 Definite Integrals

Properties of Integrals, cont.

5. (Integrals over Subintervals) If ¢ lies between a and b, then

/abf(a:) dac:/acf(x) dm+/cbf(x) da.

6. (Integrals of Absolute Values) The function |f| is integrable on [a, b]
and fab |f(z)| dx is the sum of the areas of regions bounded by the
graph of f and the x-axis on [a,b]. (See Figure 5.31 on p. 329)

(This is the total area, no negative signs.)
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Week 12
Week 13
Week 14
Week 15

5.2 Definite Integrals

Exercise
If f24 f(z) dz =3 and ff f(z) de = —2, then compute
f26 f(z) dx.
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Week 12
Week 13
Week 14
Week 15

5.2 Definite Integrals

5.2 Book Problems
11-45 (odds), 67-74
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Week 12
Week 13
Week 14
Week 15

5.3 Fundamental Theorem of Calculus

e Overview of FTOC
® Book Problems
e Friday 22 April

85.3 Fundamental Theorem of Calculus
® Area Functions
e The Fundamental Theorem of Calculus (Part 1)
e The Fundamental Theorem of Calculus (Part 2)
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5.3 Fundamental Theorem of Calculus

§5.3 Fundamental Theorem of Calculus

Using Riemann sums to evaluate definite integrals is usually
neither efficient nor practical. We will develop methods to
evaluate integrals and also tie together the concepts of
differentiation and integration.

To connect the concepts of differention and integration, we
first must define the concept of an area function.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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5.3 Fundamental Theorem of Calculus

Area Functions

Let y = f(t) be a continuous function which is defined for all t > q,
where a is a fixed number. The area function for f with left endpoint at
a is given by A(z) = [ f(t) dt.

y=r
Alx) = f findt
X
Alx)
¢
a x
constant varizble

This gives the net area of the region between the graph of f and the
t-axis between the points t = a and t = x.
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Week 12
Week 13
Week 14
Week 15

5.3 Fundamental Theorem of Calculus

Example

The graph of f is shown below. Let

:/$f(t)dt and /f ) dt

be two area functions for f. Compute A(2), F(5) F(8).

¥ ¥y =f(1)

The be

Wheeler Cal | Spring 2016

Nheeler.



5.3 Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus (Part 1)

Linear functions help to build the rationale behind the
Fundamental Theorem of Calculus.

Example

Let f(t) = 4t + 3 and define A(z) = [} f(t) dt. What is
A(2)? A(4)? A(x)? A'(z)?

In general, the property illustrated with this linear function
works for all continuous functions and is one part of the FTOC
(Fundamental Theorem of Calculus).

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 12
Week 13
Week 14
Week 15

5.3 Fundamental Theorem of Calculus

Theorem (FTOC I)

If f is continuous on [a,b], then the area function

A(z) = [ f(t) dt for a < < b is continuous on [a,b] and
differentiable on (a,b). The area function satisfies A'(x) = f(x);
or equivalently,

Aa)=1 / " F(0) dt = f(=)

which means that the area function of f is an antiderivative of f.

4
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5.3 Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus (Part 2)

Since A is an antiderivative of f, we now have a way to evaluate
definite integrals and find areas under curves.

Theorem (FTOC II)

If f is continuous on [a,b] and F' is any antiderivative of f, then

b
/ f(z) de = F(b) — F(a).

We use the notation F(z)|2 = F(b) — F(a).
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5.3 Fundamental Theorem of Calculus

Overview of FTOC

In essence, to evaluate an integral, we
@ Find any antiderivative of f, and call if F.

@ Compute F(b) — F(a), the difference in the values of F'
between the upper and lower limits of integration.

The two parts of the FTOC illustrate the inverse relationship
between differentiation and integration — the integral “undoes” the
derivative.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 12
Week 13
Week 14
Week 15

5.3 Fundamental Theorem of Calculus

Example

10
(1) Use Part 1 of the FTOC to simplify — . / 22 1

(2) Use Part 2 of the FTOC to evaluate / (1 —sinz) dx.
0

(3) Compute /y h'(p) dp.

1
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Week 13
Week 14
Week 15

5.3 Fundamental Theorem of Calculus

Exercise
Y t—5

— dt.
3;84 t2 + 1

e d
(1) Simplify .

5
(2) Evaluate [ (2% —4) du.
1
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Week 12
Week 13
Week 14
Week 15

5.3 Fundamental Theorem of Calculus

5.3 Book Problems
11-17, 19-57 (odds), 61-67 (odds)
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5.3 Fundamental Theorem of Calculus

Fri 22 Apr

@ Exam 3: Issue with increasing/decreasing, number lines,
etc. Point for signature.

@ today: Last day to drop with a "W".
@ Exam 4 next Friday. Covers §4.7-5.4
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Week 12
Week 13
Week 14
Week 15

5.4 Working with Integrals

® Mean Value Theorem for Integrals
® Book Problems

§5.4 Working with Integrals
o Integrating Even and Odd Functions
o Average Value of a Function
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5.4 Working with Integrals

§5.4 Working with Integrals

Now that we have methods to use in integrating functions, we
can examine applications of integration. These applications
include:

@ Integration of even and odd functions;
e Finding the average value of a functions;

@ Developing the Mean Value Theorem for Integrals.
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5.4 Working with Integrals

Integrating Even and Odd Functions

Recall the definition of an even function,

f(=z) = f(z),
and of an odd function,
f(=z) = —f(x).
These properties simplify integrals when the interval in question is

centered at the origin.
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5.4 Working with Integrals

Even functions are symmetric about the y-axis. So

/_(;f(a:) dx:/oaf(x) dx

i.e., the area under the curve to the left of the y-axis is equal
to the area under the curve to the right.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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5.4 Working with Integrals

PJ\
S0 = 1) {ﬂ:rn_fu{gt]iun]

[_ 100 dx = lj;f(x:- dx
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5.4 Working with Integrals

On the other hand, odd functions have 180° rotation
symmetry about the origin. So

f< /f

i.e., the area under the curve to the left of the origin is the
negative of the area under the curve to the right of the origin.
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Week 14
Week 15

5.4 Working with Integrals

Yi
y=fx)
(odd function)

S |

—a 0

f(=x) = —f(x)
The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Week 12
Week 13
Week 14
Week 15

5.4 Working with Integrals

Exercise

Evaluate the following integrals using the properties of even
and odd functions:

(1) ff4(3a:2 — ) dx

(2) J1,(1—|a|) do
(3) J sinz dx
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5.4 Working with Integrals

Average Value of a Function

Finding the average value of a function is similar to finding the average
of a set of numbers. We can estimate the average of f(x) between
points a and b by partitioning the interval [a, b] into n equally sized
sections and choosing y-values f () for each [z;_1,x]. The average is
approximately

f@E)+ @)+ + @) _ f@)+ F@) +--- + f(Tn)
n =)

= (f(@1) + f(@2) +--- + f(Tn)) Az
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Wheeler Cal | Spring 2016



5.4 Working with Integrals

Average Value of a Function

The estimate gets more accurate, the more y-values we take. Thus the
average value of an integrable function f on the interval [a, b] is

|
|
=
S| ‘
~
—
s
=
N~—
B>
8
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Week 13
Week 14
Week 15

5.4 Working with Integrals

Example

The elevation of a path is given by f(z) = 23 — 522 + 10, where
measures horizontal distances. Draw a graph of the elevation
function and find its average value for 0 < x < 4.

Exercise

Find the average value of the function f(z) = x(1 — ) on the
interval [0, 1].
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5.4 Working with Integrals

Mean Value Theorem for Integrals

The average value of a function leads to the Mean Value Theorem for

Integrals. Similar to the Mean Value Theorem from §4.6, the MVT for
integrals says we can find a point ¢ between a and b so that f(c) is the
average value of the function.

Theorem (Mean Value Theorem for Integrals)

If f is continuous on [a,b], then there is at least one point ¢ in [a,b] such
that

b
O =T =5 [ f@ d

In other words, the horizontal line y = f = f(c) intersects the graph of f
for some point c in [a, b].
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Week 13
Week 14
Week 15

5.4 Working with Integrals

Exercise

Find or approximate the point(s) at which f(z) = 22 — 2z + 1
equals its average value on [0, 2].
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5.4 Working with Integrals

5.4 Book Problems
7-27 (odds), 31-39 (odds)
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Week 12

Week 13 Exam #4 Review
Week 14 Exam #4 Review
Week 15

Mon 25 Apr

e Exam 4 Friday. Covers §4.7-5.4

@ Final! is in two weeks — same location as the midterm
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Week 12

Week 13 Exam #4 Review
Week 14 Exam #4 Review
Week 15

@ 2529 April

Exam #4 Review

e Other Remarks on the Exam
e Wednesday 27 April
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Exam #4 Review
Week 14 Exam #4 Review

§5.4 Exam #4 Review

@ §4.7 L'Hopital's Rule

Know how to use L'Hopital’s Rule, including knowing under
what conditions the Rule works.

Be able to apply L'Hopital’s Rule to a variety of limits that
are in indeterminate forms (e.g., 0/0, co/c0, 0 - 00, 00 — 00,
1%, 00, o?).

Be able to use L'Hé6pital’s Rule to determine the growth rates
of two given functions.

Be aware of the pitfalls in using L'"H&pital's Rule.
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Week 12

Week 13 Exam #4 Review
Week 14 Exam #4 Review
Week 15

85.4 Exam #4 Review (cont.)

e PRACTICE THESE. Some of the book problems have
non-obvious algebra tricks that simplify an otherwise crazy
problem.

Exercise (s)

Use analytical methods to evaluate the following limits:

(1) limg oo 2% In (cos %)

(2) lim,z (7 — 2z) tan

2

(3) limx%oo(m%% — 1z —x)

. 1
4) lim Inz
( ) MMy 0+ T
v
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Exam #4 Review
Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

Exercise
Show, using limits, that 2 grows faster than b* as x — oo, for
any b > 1.

@ §4.9 Antiderivatives

@ Know the definition of an antiderivative and be able to find
one or all antiderivatives of a function.

o Be able to evaluate indefinite integrals, including using known
properties of indefinite integrals (i.e., Power Rule, Constant
Multiple Rule, Sum Rule).

e Know how to find indefinite integrals of the six trig functions,
of e*®, of Inx, and of the three inverse trig functions listed in
the notes.
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Exam #4 Review
Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

@ Be able to solve initial value problems to find specific
antiderivatives.
@ Be able to use antiderivatives to work with motion problems.

Exercise

A payload is dropped at an elevation of 400 m from a hot-air
balloon that is descending at a rate of 10 m/s. Its acceleration due
to gravity is -9.8 m/s?.

(a) Find the velocity function for the payload.
(b) Find the position function for the payload.

(c) Find the time when the payload strikes the ground.

v
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Exam #4 Review
Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

@ §5.1 Approximating Areas under Curves

o Be able to use rectangles to approximate area under the curve
for a given function.

o Be able to write and compute a Riemann sum using a table
(#35-38 in text).

e Be able to identify whether a given Riemann sum written in
sigma notation is a left, right, or midpoint sum.
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Exam #4 Review
Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

@ §5.2 Definite Integrals

o Be able to compute left, right, or midpoint Riemann sums for
curves that have negative components, and understand the
concept of net area. Know the difference between (total) area
and net area.

o Be able to evaluate a definite integral using geometry or a
given graph.

o Know the properties of definite integrals and be able to use
them to evaluate a definite integral.
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Week 12

Week 13 Exam #4 Review
Week 14 Exam #4 Review
Week 15

85.4 Exam #4 Review (cont.)

Question
If f is continuous on [a, b] and f; | f(z)|dx = 0, what can you
conclude about f7?
Exercise
Use geometry to evaluate fllog(az) dx, where

4x 0<z<?2

g(x) =< -8 +16 2<z<3.
-8 >3
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Exam #4 Review
Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

@ §5.3 Fundamental Theorem of Calculus

@ Understand the concept of an area function, and be able to
evaluate an area function as x changes.

o Know the two parts of the Fundamental Theorem of Calculus
and its significance (i.e., the inverse relationship between
differentiation and integration).

@ Use the FTC to evaluate definite integrals or simplify given
expressions.

Exercise
Given g(z) = [, (t* + 1) dt, compute ¢'(z) using

e FTOCI.
The be ° FTOC ” Nheeler.
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Exam #4 Review
Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

@ §5.4 Working with Integrals

o Be able to integrate even and odd functions knowing the
“shortcuts” provided by these functions’ characteristics.

@ Be able to find the average value of a function.

o Know the Mean Value Theorem for Integrals and be able to
use it to find points associated with the average value of a
function.
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Week 12

Week 13 Exam #4 Review
Week 14 Exam #4 Review
Week 15

85.4 Exam #4 Review (cont.)

Exercise

Find the point(s) at which the given function equals its average
value on the given interval.

(1) f(x)=¢€"on [0,2]
(2) f(z) = %sinx on [0, 7]
(3) f@) =L on [1,4]
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Exam #4 Review
Week 14 Exam #4 Review

Other Remarks on the Exam

Tips for studying efficiently and effectively:

@ Given today'’s lists of materials you should know for the exam, if
you see a topic you don’t know then go back to the slides covering
that topic first.

@ Review slides for days you missed.

@ Redo the quizzes until you can get a perfect score without looking
at the key.

@ Book problems. Do those problems with the same attention and
care you put into Exam #3.

@ Read the textbook.
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Week 12

Week 13 Exam #4 Review
Week 14 Exam #4 Review
Week 15

Wed 27 Apr

e Exam 4 Friday. Covers §4.7-5.4

@ Final! is in two weeks — same location as the midterm

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



Week 12

Week 13 Exam #4 Review
Week 14 Exam #4 Review
Week 15

@ 2529 April

Exam #4 Review

e Other Remarks on the Exam

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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Exam #4 Review

Week 14 Exam #4 Review

§5.4 Exam #4 Review

@ §4.7 L'Hopital's Rule

Know how to use L'Hopital’s Rule, including knowing under
what conditions the Rule works.

Be able to apply L'Hopital’s Rule to a variety of limits that
are in indeterminate forms (e.g., 0/0, co/c0, 0 - 00, 00 — 00,
1%, 00, o?).

Be able to use L'Hé6pital’s Rule to determine the growth rates
of two given functions.

Be aware of the pitfalls in using L'"H&pital's Rule.
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Week 12

Week 13 Exam #4 Review
Week 14 Exam #4 Review
Week 15

85.4 Exam #4 Review (cont.)

e PRACTICE THESE. Some of the book problems have
non-obvious algebra tricks that simplify an otherwise crazy
problem.

Exercise (s)

Use analytical methods to evaluate the following limits:

(1) limg oo 2% In (cos %)

(2) lim,z (7 — 2z) tan

2

(3) limx%oo(m%% — 1z —x)

. 1
4) lim Inz
( ) MMy 0+ T
v
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Exam #4 Review
Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

Exercise
Show, using limits, that 2 grows faster than b* as x — oo, for
any b > 1.

@ §4.9 Antiderivatives

@ Know the definition of an antiderivative and be able to find
one or all antiderivatives of a function.

o Be able to evaluate indefinite integrals, including using known
properties of indefinite integrals (i.e., Power Rule, Constant
Multiple Rule, Sum Rule).

e Know how to find indefinite integrals of the six trig functions,
of e*®, of Inx, and of the three inverse trig functions listed in
the notes.
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Exam #4 Review

Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

@ Be able to solve initial value problems to find specific
antiderivatives.
@ Be able to use antiderivatives to work with motion problems.

Exercise

A payload is dropped at an elevation of 400 m from a hot-air
balloon that is descending at a rate of 10 m/s. Its acceleration due
to gravity is -9.8 m/s?.

(a) Find the velocity function for the payload.
(b) Find the position function for the payload.

(c) Find the time when the payload strikes the ground.

v
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Exam #4 Review

Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

@ §5.1 Approximating Areas under Curves

o Be able to use rectangles to approximate area under the curve
for a given function.

o Be able to write and compute a Riemann sum using a table
(#35-38 in text).

e Be able to identify whether a given Riemann sum written in
sigma notation is a left, right, or midpoint sum.
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Exam #4 Review

Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

@ §5.2 Definite Integrals

o Be able to compute left, right, or midpoint Riemann sums for
curves that have negative components, and understand the
concept of net area. Know the difference between (total) area
and net area.

o Be able to evaluate a definite integral using geometry or a
given graph.

o Know the properties of definite integrals and be able to use
them to evaluate a definite integral.
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Week 12

Week 13 Exam #4 Review
Week 14 Exam #4 Review
Week 15

85.4 Exam #4 Review (cont.)

Question
If f is continuous on [a, b] and f; | f(z)|dx = 0, what can you
conclude about f7?
Exercise
Use geometry to evaluate fllog(az) dx, where

4x 0<z<?2

g(x) =< -8 +16 2<z<3.
-8 >3
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Exam #4 Review
Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

@ §5.3 Fundamental Theorem of Calculus

@ Understand the concept of an area function, and be able to
evaluate an area function as x changes.

o Know the two parts of the Fundamental Theorem of Calculus
and its significance (i.e., the inverse relationship between
differentiation and integration).

@ Use the FTC to evaluate definite integrals or simplify given
expressions.

Exercise
Given g(z) = [, (t* + 1) dt, compute ¢'(z) using

e FTOCI.
The be ° FTOC ” Nheeler.
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Exam #4 Review

Week 14 Exam #4 Review

85.4 Exam #4 Review (cont.)

@ §5.4 Working with Integrals

o Be able to integrate even and odd functions knowing the
“shortcuts” provided by these functions’ characteristics.

@ Be able to find the average value of a function.

o Know the Mean Value Theorem for Integrals and be able to
use it to find points associated with the average value of a
function.
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Week 12

Week 13 Exam #4 Review
Week 14 Exam #4 Review
Week 15

85.4 Exam #4 Review (cont.)

Exercise

Find the point(s) at which the given function equals its average
value on the given interval.

(1) f(x)=¢€"on [0,2]
(2) f(z) = %sinx on [0, 7]
(3) f@) =L on [1,4]
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Exam #4 Review

Week 14 Exam #4 Review

Other Remarks on the Exam

Tips for studying efficiently and effectively:

@ Given today'’s lists of materials you should know for the exam, if
you see a topic you don’t know then go back to the slides covering
that topic first.

@ Review slides for days you missed.

@ Redo the quizzes until you can get a perfect score without looking
at the key.

@ Book problems. Do those problems with the same attention and
care you put into Exam #3.

@ Read the textbook.
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5.5 Substitution Rule
Final Preparation

Week 15

Mon 2 May

Exam 4 back in drill tomorrow. Feedback on Wed. Bring 7s
on Wednesday for review.
Final! is in one week — 6-8p, same location as the midterm
@ Morning Section: Walker room 124
@ Afternoon Section: Walker room 218
e CEA: Champions 326 (MRTC Testing Center) 330-730p; 330
for 2x, 430 for 1.5x
@ You must take the test with your officially scheduled section.
Review Guide on MLP
Do every problem on the Midterm perfectly (come to office
hours for feedback).
Take advantage of the quiz solutions on MLP.

Grades: | will drop your two lowest Quiz/Drill Ex scores. On
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

@ 2-4 May

§5.5 Substitution Rule
e Integration by Trial and Error
® Substitution Rule
® Substitution Rule for Indefinite Integrals
® Procedure for Substitution Rule (Change of
Variables)
® Variations on Substitution Rule
e Substitution Rule for Definite Integrals
® Book Problems
o Wednesday 4 May
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5.5 Substitution Rule
Final Preparation
Week 15

§5.5 Substitution Rule

We have seen a few methods to find antiderivatives (e.g.,
power rule, knowledge of derivatives, etc.). However, for many
functions, it is more challenging to find the antiderivative.

Today we examine the substitution rule as a method to
integrate.
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

Integration by Trial and Error

One somewhat inefficient method to find an antiderivative is by
trial and error (with a natural check — find the derivative).

Example
[ cos (2z + 5) dx

Guess: Is it sin (22 + 5) + C?
Check: L sin (22 +5) =2 cos (2z + 5)

Question J

How can you use your first attempt to refine your guess?

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

So we try $sin (22 +5) + C.
Check:

4 (Lsin (22 +5)+C) = (2 cos (2z 4 5)) = cos (2z + 5)

So [ cos (2z +5) = 3sin (22 +5) + C.
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5.5 Substitution Rule
Final Preparation

Week 15

Substitution Rule

Trial and error can work in particular settings, but it is not an
effiient strategy and doesn’t work with some functions.

However, just as the Chain Rule helped us differentiate
complex functions, the substitution rule (based on the Chain
Rule) allows us to integrate complex functions.
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5.5 Substitution Rule
Final Preparation
Week 15

Idea: Suppose we have F'(g(x)), where F' is an antiderivative of
f. Then
o |[Fn] = Pl g = r6) @)

and [ fg(a) o (a) do = Flg(a)) + C.
If we let u = g(z), then du = ¢/'(z) dz. The integral becomes

[ o) (a) da = [ fw du
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

Substitution Rule for Indefinite Integrals

Let u = g(x), where ¢’ is continuous on an interval, and let f be
continuous on the corresponding range of g. On that interval,

/ flg(z)d (z) dz = / f(u) du.

u-Substitution is the Chain Rule, backwards.

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

Example

Evaluate [ 8z cos(4z? + 3) du.

Solution: Look for a function whose derivative also appears.

u(z) = 422 +3
du
d / == —=
and u'(x) . 8z

= du = 8z dx.
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5.5 Substitution Rule
Final Preparation
Week 15

Now rewrite the integral and evaluate. Replace u at the end with its
expression in terms of x.

2 _ 2
/830 cos(4x” + 3) da = /cos(4x + 3) 8z dx

u du

= /cosu du

=sinu+C

sin(4a? + 3) + C

We can check the answer — by the Chain Rule,
d . 2 2
s (sin (42% 4 3) + C) = 8z cos (4z° + 3).
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5.5 Substitution Rule
Final Preparation
Week 15

Procedure for Substitution Rule (Change of Variables)

1. Given an indefinite integral involving a composite function
f(g(x)), identify an inner function u = g(x) such that a
constant multiple of ¢’(x) appears in the integrand.

2. Substitute u = g(z) and du = ¢'(x) dx in the integral.
3. Evaluate the new indefinite integral with respect to w.

4. Write the result in terms of x using u = g(z).

Warning: Not all integrals yield to the Substitution Rule.
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

Example

Evaluating the integral [ -7 dw yields the result
A. zarctanz + C

22

2 +C

B.
3+x
Ciln@*+1)+C
D. In|z|+C
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

Exercise

Evaluate the following integrals. Check your work by differentiating each
of your answers.

1. fsinlomcosx dx

2. _f cscxrcotx dr

1+csc T

4. [(3z*+ 8z +5)%(3z +4) du
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Wheeler Cal | Spring 2016



Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

Variations on Substitution Rule

There are times when the u-substitution is not obvious or that more work
must be done.

Example

Evaluate fﬁ dz.

Solution: Let u =2 + 1. Then x = v — 1 and du = dz. Hence,

Jt= [

2_9 1
:/%du
u
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

= / (u_2 —ou3 4 u_4) du

I
|
4

S B S S o
Cx+l o (z+1)2 3(z+1)3

Exercise
Check it. J

This type of strategy works, usually, on problems where u can be written
as a linear function of x.
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

Exercise

[ S da

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified/formatted by Dr. Ashley K. Wheeler.
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5.5 Substitution Rule
Final Preparation
Week 15

Substitution Rule for Definite Integrals

We can use the Substitution Rule for Definite Integrals in two different
ways:

1. Use the Substitution Rule to find an antiderivative I, and then use
the Fundamental Theorem of Calculus to evaluate F'(b) — F'(a).

2. Alternatively, once you have changed variables from x to u, you
may also change the limits of integration and complete the
integration with respect to u. Specifically, if u = g(x), the lower
limit 2 = a is replaced by u = g(a) and the upper limit x = b is
replaced by u = g(b).

The second option is typically more efficient and should be used
whenever possible.
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

Example

Evaluate fﬁﬁ dx.

Solution: Let u =9 + z2. Then du = 2z dz. Because we have changed
the variable of integration from x to u, the limits of integration must also
be expressed in terms of u. Recall, u is a function of z (the g(x) in the
Chain Rule). For this example,

r=0 = u(0)=94+0>=9

=4 = u(4)=9+4>=25
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

We had v = 9+ 22 and du = 2z dox = %du:xdx. So:

/4 T 1 [ du
——drx = - —
0 V9+ 22 2 )9 Vu

1 u% #
=5 ? 9
=25 -9
=5—-3=2
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

Exercise

Evaluate fo dz.

2+1)2
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

5.5 Book Problems
13-51 (odds), 63-77 (odds)
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Week 12
Week 13
Week 14
Week 15

@ Exam 4 Spread
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15
Distribution
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5.5 Substitution Rule
Final Preparation
Week 15

Wed 4 May (cont.)

@ Final! is Monday 9 May 2016 6-8p, same location as the
midterm
@ Morning Section: Walker room 124
o Afternoon Section: Walker room 218
e CEA: Champions 326 (MRTC Testing Center) 330-730p; 330
for 2x, 430 for 1.5x
@ You must take the test with your officially scheduled section.
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5.5 Substitution Rule
Final Preparation
Week 15

Wed 4 May (cont.)
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5.5 Substitution Rule
Final Preparation
Week 15

Wed 4 May (cont.)

@ Review Guide on MLP

@ Do every problem on the Midterm perfectly (come to office
hours for feedback).

@ Take advantage of the quiz solutions on MLP.

@ Grades: | will drop your two lowest Quiz/Drill Ex scores.
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Week 12

Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

@ 2-4 May

Final Preparation
e About the Test
o Advice for the FINAL
e Easter Egg-xercises
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5.5 Substitution Rule
Final Preparation
Week 15

Final Preparation

Perparation for final: Be sure to download the study guide for the final
and note the sections to focus on (e.g., ignore 4.3, 5.1, 5.2). Be prepared
to do:

@ Integration (power rule, substitution) — you'll have time to check
these using differentiation!

Related Rates
Optimization

Use of First and Second Derivative Test

Derivatives of trig functions, inverse trig functions, log and
exponential functions

@ Use of derivative to find equations of tangent lines
The base for %se Lﬁ!igulssdo(é'{)%lﬂgh%rr]oq |I¥Ig|r§aallam g&hgdnﬁj mbyl‘D,ﬁdémnpé|a’r§|)modified/formatted by Dr. Ashley K. Wheeler.
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5.5 Substitution Rule
Final Preparation
Week 15

Preparation for final:
@ In general, anything that is on the study guide is fair game!!!

@ WATCH YOUR NOTATION!!!! (e.g., limit notations,
derivative notation, integral notation, etc.)
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5.5 Substitution Rule
Final Preparation
Week 15

A good place to start is reworking problmes from the 5 exams (4
hourly tests plus midterm). This gives you a wide (yet still
incomplete) scope of the problems we have done.

Other things you can do to prepare for the final:

@ Examine the Study Plan on Mylabsplus to see areas where you
struggled on Computer HWs

@ Review Completed Paper HWs (or finish paper HWs!)

@ Go back over problems worked in class, on quizzes, and on drill
exercises
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5.5 Substitution Rule
Final Preparation
Week 15

About the Test

@ It is cumulative!ll However, the course has built to this
point, so expect more from material since the midterm
than before.

@ 20 questions in 2 hours

@ Grades should be completed by the end of the week
(Friday, 13 May PM)

The base for these slides was done by Dr. Shannon Dingman, later encoded into IATEX by Dr. Brad Lutes and modified /formatted by Dr. Ashley K. Wheeler.

Wheeler Cal | Spring 2016



5.5 Substitution Rule
Final Preparation
Week 15

Advice for the FINAL

@ +Cs, dxs, lim, units, etc. should be included in your answers or
else. Don't try to round answers unless it is for a story problem, in
which case, you should say “approximately”.

@ “Definition of Derivative” = the definition with limits

Practice limits and I'Ho6pital’s Rule so you know which is the
quickest technique.

“Mean Value Theorem for Derivatives” = MVT from §4.6.
arctan = tan™!, etc.

Use the Continuity Checklist for questions about continuity.

Use limits for questions about vertical asyptotes and end behavior.
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Week 13 5.5 Substitution Rule
Week 14 Final Preparation
Week 15

Easter Egg-xercises

Exercise (s)
1. Find the 101st derivative of y = cos 7x at x = 0.

2. For what values of the constants @ and b is (—1,2) a
point of inflection on the curve y = ax® + ba? — 8x + 27
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